
26. Examples of quotient rings

In this lecture we will consider some interesting examples of quotient

rings. First we will recall the definition of a quotient ring and also define

homomorphisms and isomorphisms of rings.

Definition. LetR be a commutative ring and I an ideal ofR. The quotient ring

R/I is the set of distinct additive cosets a+ I, with addition and multipli-

cation defined by

(a+ I) + (b+ I) = (a+ b) + I and (a+ I)(b+ I) = ab+ I.

Definition. Let R and S be rings.

(i) A mapping ϕ : R→ S is called a ring homomorphism if

ϕ(a+ b) = ϕ(a) + ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ R.

(ii) A ring isomorphism is a bijective ring homomorphism.

(iii) The rings R and S are called isomorphic if there exists a ring iso-

morphism ϕ : R→ S.

Example 1: Let R = Z and I = nZ for some n > 1. Let us show that

the quotient ring R/I = Z/nZ is isomorphic to Zn (as a ring).

Proof. In the course of our study of quotient groups we have already seen

that

Z/nZ = {0 + nZ, 1 + nZ, . . . , (n− 1) + nZ} as a set.

Moreover, by Proposition 22.3, Z/nZ is isomorphic to Zn as a group with

addition, and an explicit isomorphism is given by the map ι : Z/nZ → Zn

where

ι(x+ nZ) = [x]n (∗ ∗ ∗)
This means that the map ι : Z/nZ→ Zn given by (***) is

(a) well-defined

(b) bijective

(c) preserves group operation (addition), that is,

ι((x+ nZ) + (y + nZ)) = ι((x+ y) + nZ) for all x, y ∈ Z

We claim that ι is actually a ring isomorphism. In view of (a), (b) and (c)

it remains to check that ι also preserves multiplication, which can be done

directly (using the definition of multiplication in both Z/nZ and Zn):

ι((x+ nZ)(y + nZ)) = ι(xy + nZ) = [xy]n = [x]n[y]n = ι(x+ nZ)ι(y + nZ).
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Remark: We could give a proof without referring to Proposition 22.3, by

checking conditions (a), (b) and (c) directly, which is not difficult.

Example 2: Let R = R[x], the ring of polynomials with real coefficients

and I = (x2 + 1)R = {(x2 + 1)f : f ∈ R}, the principal ideal of R generated

by x2 + 1. Let us prove that the quotient ring R/I = R[x]/(x2 + 1)R[x] is

isomorphic to C (complex numbers).

We start with a very important result about polynomials which is an

analogue of division with remainder for integers:

Theorem 26.1 (Long division of polynomials). Let F be a field, and let

f, g ∈ F [x] with g 6= 0. Then there exist unique polynomials q, r ∈ F [x] such

that f = qg + r and deg(r) < deg(g).

Remark: By definition, a nonzero polynomial h ∈ F [x] has degree n if

h = anx
n + . . . + a0 with ai ∈ F and an 6= 0. The degree of the zero

polynomial is defined to be −∞.

Proof for Example 2. We shall use the shortcut notation

[f ] = f + I for f ∈ F [x].

With this notation, the formulas for addition and multiplication can be

rewritten as [f ] + [g] = [f + g] and [f ] · [g] = [fg]. Observation 25.1 can be

restated by saying that

[f ] = [f ′] ⇐⇒ f ′ − f ∈ I. (∗ ∗ ∗)

In other words, [f ] = [f ′] ⇐⇒ f ′ − f is divisible by x2 + 1.

Lemma 26.2. For every f ∈ R[x] there exist unique a, b ∈ R such that

[f ] = [a+ bx].

Proof. We apply Theorem 26.1 with g = x2 + 1. Thus, we can write f =

(x2 + 1)q + r where deg(r) < deg(x2 + 1) = 2. Hence deg(r) ≤ 1, so we can

write r = a + bx for some a, b ∈ R. Since f − r = (x2 + 1)q ∈ I, by (***)

we have [f ] = [r] = [a + bx]. This proves the existence part of the Lemma.

The uniqueness of a and b follows from the uniqueness of the remainder in

Theorem 26.1. �

Lemma 26.3. The equality [x]2 = −[1] holds in R/I.

Proof. This is because [x]2 − (−[1]) = [x2] + [1] = [x2 + 1] = [0] (since

x2 + 1 ∈ I). �
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We are now ready to prove that R/I and C are isomorphic as rings. Define

a map ϕ : C→ R/I by

ϕ(a+ bi) = [a+ bx] for all a, b ∈ R

We claim that ϕ is a ring isomorphism.

1. ϕ is well defined since every complex number is uniquely written as

a+ bi with a, b ∈ R.

2. Next we claim that ϕ is bijective. This follows directly from Lemma 26.2:

the existence part of Lemma 26.2 implies that ϕ is surjective, and the unique-

ness part of Lemma 26.2 implies that ϕ is injective (verify the details).

3. Next we check that ϕ preserves addition: for every a, b, c, d ∈ R we

have

ϕ((a+ bi) + (c+ di)) = ϕ((a+ c) + (b+ d)i) = [(a+ c) + (b+ d)x] =

[(a+ bx) + (c+ dx)] = [a+ bx] + [c+ dx] = ϕ(a+ bi) + ϕ(c+ di).

4. Finally, we check that ϕ preserves multiplication. This is a bit trickier

and uses Lemma 26.3. For every a, b, c, d ∈ R we have

ϕ((a+ bi) · (c+ di)) = ϕ(ac− bd+ (ad+ bc)i) = [ac− bd+ (ad+ bc)x]

while

ϕ(a+ bi)ϕ(c+ di) = [a+ bx][c+ dx] = [(a+ bx)(c+ dx)] =

[ac+ (ad+ bc)x+ bdx2] = [ac+ (ad+ bc)x] + [bd][x2].

Since [x2] = [x]2 = −[1] by Lemma 26.3, we have

[ac+(ad+bc)x]+[bd][x2] = [ac+(ad+bc)x]−[bd][1] = [(ac−bd)+(ad+bc)x].

Thus, ϕ((a+ bi) · (c+ di)) = ϕ(a+ bi)ϕ(c+ di).

Combining 1-4, we conclude that ϕ is a ring isomorphism. �

Another way to prove the isomorphism in Example 2 is by using FTH for

rings which is formulated below.

Definition. Let ϕ : R → S be a ring homomorphism. The set Kerϕ =

{r ∈ R : ϕ(r) = 0S} is called the kernel of ϕ.

Theorem 26.4 (FTH for rings). Let R and S be commutative rings and

ϕ : R→ S a ring homomorphism. Then

(i) Kerϕ is an ideal of R

(ii) The quotient ring R/Kerϕ is isomorphic to ϕ(R).

Proof. Part (i) is left as an exercise, and part (ii) is proved similarly to FTH

for groups. �
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Exercise: Define the map ψ : R[x] → C by ψ(f) = f(i). Thus, ψ is the

evaluation map which sends every polynomial f ∈ R[x] to its value at x = i.

Prove that ψ is a surjective ring homomorphism and Kerψ = (x2 + 1)R[x]

and deduce that R[x]/(x2 + 1)R[x] ∼= C using FTH.

Example 3: Again let R = R[x] and I = (x2 − 1)R[x]. Prove that the

quotient ring R/I has zero divisors and therefore cannot be a field.

Proof. We will use the same general notations as in Example 2: [f ] = f + I

for f ∈ R. Consider the elements a = [x− 1] and b = [x+ 1] of R/I. Then

a 6= [0] since x− 1 6∈ I (as x2− 1 does not divide x− 1) and similarly b 6= [0]

since x+ 1 6∈ I. On the other hand, ab = [x− 1][x+ 1] = [(x− 1)(x+ 1)] =

[x2 − 1] = [0]. Therefore, a and b are both zero divisors. �

Definition. If A and B are rings, their direct product A×B is defined as

follows: as a set A × B = {(a, b) : a ∈ A, b ∈ B}, and ring operations on

A×B are defined componentwise:

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2) and (a1, b1) · (a2, b2) = (a1a2, b1b2).

The following facts are easy to check:

(i) The zero element of A×B is the pair (0A, 0B).

(ii) If A and B are both commutative, then A×B is also commutative

(iii) If A and B are both rings with unity, then A×B is also a ring with

unity, and the unity of A×B is the pair (1A, 1B).

Exercise: Prove that the quotient ring R/I = R[x]/(x2 − 1)R[x] from

Example 3 is isomorphic to R× R.


