
24. Rings

24.1. Definitions and basic examples.

Definition. A ring R is a set with two binary operations + (addition) and

· (multiplication) satisfying the following axioms:

(A0) R is closed under addition

(A1) addition is associative

(A2) there exists 0 ∈ R s.t. a+ 0 = 0 + a for all a ∈ R
(A3) for every a ∈ R there exists −a ∈ R s.t. a+ (−a) = (−a) + a = 0

(A4) addition is commutative

(M0) R is closed under multiplication

(M1) multiplication is associative

(D1) distributivity on the left: (a+ b)c = ac+ bc for all a, b, c ∈ R
(D2) distributivity on the right: c(a+ b) = ca+ cb for all a, b, c ∈ R

Remark: The axioms (A0)-(A3) simply say that R is a group with respect

to addition. Axiom (A4) says that the group (R,+) is abelian.

Definition. A ring R is called commutative if multiplication is commuta-

tive, that is, ab = ba for all a, b ∈ R.

Definition. A ring R is a called a ring with 1 (or a ring with unity) if there

exists 1 ∈ R s.t. a · 1 = 1 · a = a for all a ∈ R.

Definition. A ring R is called a field if

(i) R is commutative,

(ii) R is a ring with 1

(iii) for every a ∈ R, with a 6= 0, there exists a−1 ∈ R such that a ·a−1 =

a−1 · a = 1

(iv) 1 6= 0.

Examples: 1. Fields. The examples of fields we know so far are Q,R,C
and Zp where p is prime.

2. Commutative rings with 1, which are not fields. The examples we have

seen so far are Z and Zn where n is non-prime. Another important class of

examples is given by polynomial rings:

Let R be a commutative ring with 1, and let R[x] denote the set of all

polynomials with coefficients in R. One can think of R[x] as the set of formal
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expressions a0 + a1x+ . . .+ anx
n, with ai ∈ R. Addition and multiplication

on R[x] are defined according to the “usual algebra rules”, e.g.

(a0 + a1x) + (b0 + b1x+ b2x
2) = (a0 + b0) + (a1 + b1)x+ b2x

2 and

(a0+a1x)·(b0+b1x+b2x
2) = a0b0+(a0b1+a1b0)x+(a0b2+a1b1)x

2+a1b2x
3.

It is a rather long but straightforward calculation to check that R[x] with

these operations becomes a ring with 1. The unity element of R[x] is the

constant polynomial 1 (where 1 is the unity element of R).

3. Commutative rings without 1. The basic examples are the rings nZ
where n ≥ 2 is a fixed integer.

4. Noncommutative rings. The basic examples are the matrix rings

Matn(F ) where F is some field and n ≥ 2.

In this course we will be mostly interested in the structure of commutative

rings with 1.

24.2. Subrings. A common way to construct more rings is to take subrings

of rings we already know. As in the case of subgroups, we have two defi-

nitions of a subring – the first one is conceptually natural while the second

one which is easy to understand and apply.

Definition 1. Let R be a ring. A subset S is called a subring of R if S is

a ring with respect to addition and multiplication defined on R.

Definition 2. Let R be a ring. A subset S is called a subring of R if

(i) S contains 0

(ii) S is closed under addition

(iii) S is closed under additive inversion, that is, if x ∈ S, then −x ∈ S
(iv) S is closed under multiplication

Note that conditions (i)-(iii) simply say that S is a subgroup of (R,+),

that is, a subgroup of R with respect to addition.

The equivalence of Definitions 1 and 2 is proved similarly to the case of

subgroups. Here we just mention that condition (i) comes from axiom (A2),

(ii) comes from axiom (A0), (iii) comes from (A3) and (iv) comes from (M0).

The remaining axioms (A1), (A4), (M1), (D1) and (D2) do not yield any

extra conditions since if they hold for R, they automatically hold for any

subset of R.

Example 1: Let R = R (reals) and S = {a+ b
√

2 : a, b ∈ Z}.

(a) Prove that S is a subring of R
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(b) Prove that S is the minimal subring of R containing 1 and
√

2. In

other words, prove that if T is any subring of R containing 1 and√
2, then S ⊆ T .

Proof of (a). Let us check conditions (i)-(iv):

(i) Since 0 = 0 + 0 ·
√

2 and 0 ∈ Z, we have 0 ∈ S.

(ii) Let x, y ∈ S. Then x = a+ b
√

2 and y = c+d
√

2 for some a, b, c, d ∈
Z. Then x + y = (a + c) + (b + d)

√
2. Since a, b, c, d ∈ Z, we have

a+ c, b+ d ∈ Z as well, so x+ y ∈ S, as desired.

(iii) Let x ∈ S, so that x = a + b
√

2 for some a, b ∈ Z. Then −x =

−a+ (−b)
√

2. Since −a,−b ∈ Z, we conclude that −x ∈ S.

(iv) Let x, y ∈ S, so that x = a + b
√

2 and y = c + d
√

2 for some

a, b, c, d ∈ Z. Then xy = ac + ad
√

2 + bc
√

2 + 2bd = (ac + 2bd) +

(ad + bc)
√

2 = e + f
√

2 where e = ac + 2bd and f = ad + bc. Since

e, f ∈ Z, we conclude that xy ∈ S.

Thus, we proved that S is a subring of R. �

Proof of (b). Let T be any subring of R containing 1 and
√

2.

(α) Since T is closed under addition, T must contain 1 + 1, 1 + 1 + 1, . . . ,

so T contains all positive integers

(β) Since T is closed under additive inversion, by (α), T contains all

negative integers.

(γ) We also know that 0 ∈ T , so from (α) and (β) we obtain that T

contains Z.

(δ) Since T contains Z and
√

2 and T is closed under multiplication, we

conclude that T contains b
√

2 for all b ∈ Z.

(ε) Since T is closed under addition, from (γ) and (δ) we get that T

contains a+ b
√

2 for all a, b ∈ Z, so T contains S.

�

Let us now consider a general problem.

Problem 24.1. Let R be a commutative ring and Y a subset of R. Find

the minimal subring of R containing Y .

In Example 1 we solved this problem with R = R and Y = {1,
√

2}.
However, we had an advantage of knowing the answer right away, and we

only had to prove that the given answer was correct. Here is a very general

three-step algorithm which can be used to solve Problem 24.1 when the

answer is not known.

Algorithm for solving Problem 24.1.
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Step 1. Make a guess. Your guess should be the set of all elements

of R which can be obtained from Y using addition, additive inversion and

multiplication.

Step 2. Let S be your guess from Step 1. Prove that S is a subring.

Step 3. Prove that if T is any subring of R containing Y , then S ⊂ T .

Steps 2 and 3 imply that S is the minimal subring of R containing Y .

Example 2: Let R = R[x], the polynomials with real coefficients. Find

the minimal subring of R which contains x2.

Solution: We implement the above algorithm. In this example Y = {x2}.

Step 1: What can we get starting from x2 if we are only using addition,

additive inversion and multiplication? Using multiplication, we get x2 ·x2 =

x4, x4 · x2 = x6, . . .. So, we get x2k for every k ∈ Z>0.

Next, for a fixed k, using addition and additive inversion from x2k we get

0,±x2k,±2x2k, . . . , so we can get a2kx
2k for any a2k ∈ Z (note that 0 can

be obtained, for instance, as x2k + (−x2k)).

Finally, adding such elements for different k′s we get any polynomial of

the form

a2x
2 + a4x

4 + . . .+ a2nx
2n where each a2i ∈ Z and n ∈ Z>0. (∗ ∗ ∗)

It seems that no other elements can be created using addition, additive

inversion and multiplication. Thus we take the set of all polynomials given

by (***) as our guess.

Step 2: Let

S = {a2x2 + a4x
4 + . . .+ a2nx

2n where each a2i ∈ Z and n ∈ Z>0}.

We need to prove that S is a subring. This is done by direct verification of

conditions (i)-(iv), similarly to what we did in Example 1.

Exercise: Do this verification. It is routine, but without it you would

not know if you are getting correct answer or not!!!

Step 3: Prove that if T is any subring containing x2, then T contains S.

To prove this we essentially repeat our argument from Step 1.

So, here is our final answer. The minimal subring of R[x] containing x2 is

{a2x2 + a4x
4 + . . .+ a2nx

2n where each a2i ∈ Z and n ∈ Z>0}.

What if the guess is wrong. Note that the argument in Step 1 does not

have to be formal. Step 1 is just used to make a guess, and all justification

is done in Steps 2 and 3. So, what happens if our guess S from Step 1 was

wrong? In other words, let Smin be the correct answer to the problem, that
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is, let Smin be the minimal subring of R containing Y , and suppose that our

guess S is not equal to Smin. Then one of the following must happen:

(i) S contains some redundant element, that is, there exists some f ∈ S
s.t. f 6∈ Smin.

(ii) S does not have any redundant elements, but some elements are

missing from S. In other words, S is contained in Smin, but S 6=
Smin.

In both cases we will be able to detect the mistake in Step 2 or 3. If problem

(i) occurred, then we will not be able to complete Step 3, that is, we will not

be able to prove that if T is any subring of R containing Y , then T contains

S. If problem (ii) occurred, then we will not be able to complete Step 2,

that is, we will not be able to prove that S is a subring.

Here is an illustration of two typical wrong guesses in Example 2.

Wrong guess 1. S = {ax2 : a ∈ Z} (recall that this was our initial guess

in class). Here problem (ii) occurs. We detect this problem in Step 2 as S

is clearly not a subring: x2 ∈ S, but x4 = x2 · x2 6∈ S.

Wrong guess 2.

S = {a2x2 + a4x
4 + . . .+ a2nx

2n where each a2i ∈ R and n ∈ Z>0}

(the difference with the correct answer is that here coefficients are allowed

to be real numbers, not necessarily integers). Here problem (i) occurs. We

detect this problem in Step 3. For instance, starting from the assumption

that T is a subring and x2 ∈ T , we will never be able to prove that 1
2x

2 ∈ T ,

so we cannot deduce that T contains S.

Let us now go back to our solution in Example 2. Note that when we

made our guess S in Step 1, we made sure that problem (i) did not occur,

that is, for every element f that we included in S, we showed explicitly how

to obtain that element starting from x2 using addition, additive inversion

and multiplication. This is why in Step 3 we did not have to do any new

computations and simply referred to work already done in Step 1. This is

how things would usually work out. However, in some examples it may be

convenient to make a “more risky” guess. In such cases we will need to do

Step 3 carefully, as we did in Example 1.


