
23. Quotient groups II

23.1. Proof of the fundamental theorem of homomorphisms (FTH).

We start by recalling the statement of FTH introduced last time.

Theorem (FTH). Let G, Q be groups and ϕ : G → Q a homomorphism.

Then

G/Kerϕ ∼= ϕ(G). (∗ ∗ ∗)

Proof. Let K = Kerϕ and define the map Φ : G/K → ϕ(G) by

Φ(gK) = ϕ(g) for g ∈ G.

We claim that Φ is a well defined mapping and that Φ is an isomorphism.

Thus we need to check the following four conditions:

(i) Φ is well defined

(ii) Φ is injective

(iii) Φ is surjective

(iv) Φ is a homomorphism

For (i) we need to prove the implication “g1K = g2K ⇒ Φ(g1K) =

Φ(g2K).”

So, assume that g1K = g2K for some g1, g2 ∈ G. Then g−11 g2 ∈ K by

Theorem 19.2, so ϕ(g−11 g2) = eQ (recall that K = Kerϕ). Since ϕ(g−11 g2) =

ϕ(g1)
−1ϕ(g2), we get ϕ(g1)

−1ϕ(g2) = eQ. Thus, ϕ(g1) = ϕ(g2), and so

Φ(g1K) = Φ(g2K), as desired.

For (ii) we need to prove that “Φ(g1K) = Φ(g2K) ⇒ g1K = g2K.” This

is done by taking the argument in the proof of (i) and reversing all the

implication arrows.

(iii) First note that by construction Codomain(Φ) = ϕ(G). Thus, for

surjectivity of Φ we need to show that Range(Φ) = Φ(G/K) is equal to

ϕ(G). This is clear since

Φ(G/K) = {Φ(gK) : g ∈ G} = {ϕ(g) : g ∈ G} = ϕ(G).

(iv) Finally, for any g1, g2 ∈ G we have

Φ(g1K · g2K) = Φ(g1g2K) = ϕ(g1g2) = ϕ(g1)ϕ(g2) = Φ(g1K)Φ(g2K)

where the first equality holds by the definition of product in quotient groups.

Thus, Φ is a homomorphism.
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So, we constructed an isomorphism Φ : G/Kerϕ → ϕ(G), and thus

G/Kerϕ is isomorphic to ϕ(G). �

23.2. Applications of FTH. In most applications one uses a special case

of FTH stated last time as Corollary 22.5:

If ϕ : G→ Q is a surjective homomorphism, then G/Kerϕ ∼= Q. (***)

Typically this result is being applied as follows. We are given a group

G, a normal subgroup K and another group Q (unrelated to G), and we

are asked to prove that G/K ∼= Q. By (***) to prove that G/K ∼= Q it

suffices to find a surjective homomorphism ϕ : G → Q such that

Kerϕ = K.

Example 1: Let n ≥ 2 be an integer. Prove that

Z/nZ ∼= Zn.

We already established this isomorphism in Lecture 22 (see Corollary 22.3),

so the point of this example is mostly to illustrate how FTH works.

In this example G = Z, Q = Zn and K = nZ. Define the map

ϕ : Z → Zn by ϕ(x) = [x]n. It is straightforward to check that ϕ is a

surjective homomorphism (anyway, this was verified in Lecture 15). We

have

Kerϕ = {x ∈ Z : [x]n = [0]n} = {x ∈ Z : x = nk for some k ∈ Z} = nZ = K.

Thus, by FTH (or, more precisely, by (***)) we have Z/nZ ∼= Zn.

Example 2: Let U be the group of rotations of the unit circle in R2.

Prove that

U ∼= R/Z.

Remark: As usual, by R we denote the group of reals (with addition) and

Z is thought of as a subgroup of R.

In this example G = R, Q = U and K = Z. By definition, U = {rα :

α ∈ R}, where rα is the counterclockwise rotation by α radians. Clearly,

the group operation on U is given by rαrβ = rα+β for all α, β ∈ R.

Define the map ϕ : R→ U by

ϕ(x) = r2πx for all x ∈ R.

Then ϕ is a homomorphism since

ϕ(x)ϕ(y) = r2πxr2πy = r2π(x+y) = ϕ(x+ y),

and ϕ is surjective, since any element of U is equal to rα for some α ∈ R,

and any α ∈ R can be written as 2πx for some x ∈ R (namely x = α/2π).
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Finally, Kerϕ consists of all x ∈ R such that r2πx is the trivial rotation.

But a rotation by the angle of α radians is trivial if and only if α is an

integer multiple of 2π. Thus,

x ∈ Kerϕ ⇐⇒ 2πx = 2πk for some k ∈ Z ⇐⇒ x ∈ Z.

Thus, Kerϕ = Z = K, as desired, and again by FTH we conclude that

R/Z ∼= U.

Note that in this example we managed to determine the isomorphism class

of the quotient group R/Z without having to “visualize” it. We will return

to the latter problem later in this lecture.

Example 3: Prove that the alternating group An (the subgroup of even

permutations in Sn) has index 2 in Sn.

This can be proved in a number of different ways; using FTH is just

one of them. To prove that [Sn : An] = 2 we will construct a surjective

homomorphism ϕ : Sn → Z2 with Kerϕ = An. If this is achieved, it would

follow that Sn/An ∼= Z2, so |Sn/An| = |Z2| = 2, and therefore [Sn : An] =

|Sn/An| = 2, as desired.

Define ϕ : Sn → Z2 by

ϕ(f) =

{
[0] if f is even
[1] if f is odd.

By construction ϕ is surjective. To prove that ϕ is a homomorphism we

need to show that

ϕ(f) + ϕ(g) = ϕ(fg) for all f, g ∈ Sn (∗ ∗ ∗)

Recall (Proposition A.3 in the notes on even/odd permutations) that

if f and g are both even or both odd, then fg is even

if f is even and g is odd, or if f is odd and g is even, then fg is odd.

Let us consider 4 cases.

1. f and g are both even. Then fg is also even. So, ϕ(f) = ϕ(g) =

ϕ(fg) = [0]. Since [0] + [0] = [0], (***) holds.

2. f is even, and g is odd. Then fg is odd. So, ϕ(f)+ϕ(g) = [0]+[1] =

[1] = ϕ(fg).

3. f is odd, and g is even. This case is analogous to Case 2.

4. f and g are both odd. Then fg is even, so ϕ(f) +ϕ(g) = [1] + [1] =

[0] = ϕ(fg).

Thus, we verified that ϕ is a homomorphism. Finally, Kerϕ = {f ∈ Sn :

ϕ(f) = [0]2} is the set of all even permutations, so Kerϕ = An (by definition

of An).
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This completes the proof of the equality [Sn : An] = 2. The homo-

morphism ϕ : Sn → Z2 constructed in the above proof has many other

applications. We illustrate this by using ϕ to give an alternative solution to

Problem 6(c) in HW#10, in fact, a stronger version of it:

Claim 23.1. Let f ∈ Sn, and suppose f = f1 . . . fr where fi’s are cycles

(not necessarily disjoint!) Let a be the number of cycles in the sequence

f1, f2, . . . , fr which have even length. Then f is even if and only if a is

even.

Proof. Applying ϕ to both sides of the equality f = f1 . . . fr, we get

ϕ(f) = ϕ(f1) + . . .+ ϕ(fr). (∗ ∗ ∗)

If fi has odd length, then fi is an even permutation, so ϕ(fi) = [0] by

definition of ϕ. Likewise if fi has even length, then fi is an odd permutation,

so ϕ(fi) = [1]. Thus, each cycle of even length contributes [1] to the right-

hand side of (***), and cycles of odd length contribute [0]. Hence ϕ(f) =

[1] + . . .+ [1]︸ ︷︷ ︸
a times

= [a]. Therefore, f is even ⇐⇒ ϕ(f) = [0] ⇐⇒ [a] = [0]

⇐⇒ a is even. �

23.3. Transversals.

Definition. Let G be a group and H a subgroup of G. A subset T of G is

called a transversal of H in G if T contains PRECISELY one element from

each left coset with respect to H.

Example: Let G = Z and H = 3Z. Then H has 3 left cosets: 0+H, 1+H

and 2 + H, so the set T = {0, 1, 2} is a transversal. Another transversal is

{2, 7, 9}. In general, in this example, a set T will be a transversal ⇐⇒
|T | = 3 and T contains one integer divisible by 3, one integer congruent to

1 mod 3 and one integer congruent to 2 mod 3.

If T is a transversal of H in G, then by definition |T | = |G/H|, that is,

T has the same size as the quotient set G/H. In fact, there is a natural

bijective mapping T → G/H given by t 7→ tH.

Assume now that H is normal, so that G/H is a group. Then we can

define a binary operation ∗ on T so that (T, ∗) is a group which is isomorphic

to G/H. This can be done as follows: for each g ∈ G denote by ḡ the unique

element of T which lies in the coset gH. Note that ḡ = g ⇐⇒ g ∈ T . Now

define a binary operation ∗ on T by setting

t1 ∗ t2 = t1t2 for all t1, t2 ∈ T (!!!)

The following proposition is left as an exercise:
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Proposition 23.2. (T, ∗) is a group, which is isomorphic to G/H via the

map ι : T → G/H given by ι(t) = tH.

We can now use Proposition 23.2 to give a new “interpretation” of the

cylcic groups Zn and also better visualize the quotient group R/Z.

Example A: Let n ≥ 2 be an integer. We already proved that the

quotient group Z/nZ is isomorphic to Zn.

Let G = Z, H = nZ and T = {0, 1, . . . , n − 1}. Then T is clearly a

transversal of H in G, and in the above notations for any x ∈ Z we have

x = the remainder of dividing x by n.

Thus, by Proposition 23.2, G/H = Z/nZ is isomorphic to the following

group which we denote by Z′n:

As a set Z′n = {0, 1, . . . , n − 1}, the set of integers from 0 to n − 1. The

group operation +′ on Z′n is defined by

x+′ y = the remainder of dividing x+ y by n.

From this description you can see that Z′n is essentially the same group as Zn
except for minor notational differences. In fact, if we defined Zn as we did

in Lecture 2 (at the very beginning of the course), then the group (Zn,+)

would be precisely Z′n as defined above.

Example B: Now let G = R (with addition) and H = Z. Let

T = [0, 1) = {x ∈ R : 0 ≤ x < 1} ⊂ R.

We claim that T is a transversal of H in G. Indeed, the cosets of H have

the form x + Z, with x ∈ R, and it is easy to see that x + Z will contain

precisely one element of T , namely the fractional part of x, denoted by {x}.
For instance, let x = 2.1. Then

x+ Z = {. . . ,−0.9, 0.1, 1.1, 2.1, 3.1, . . .},

and the unique number in (x+ Z) ∩ T is 0.1 = {2.1}.

Thus, T is a transversal of Z in R, and in the above notations for every

x ∈ R we have x = {x}. Applying Proposition 23.2, we get the following

conclusion: introduce the group operation +′ on T = [0, 1) by

x+′ y = {x+ y}.

Then (T,+′) is isomorphic to R/Z. Note that the operation +′ on T can be

more explicitly described as follows: for every x, y ∈ T we have

x+′ y =

{
x+ y if x+ y < 1
x+ y − 1 if x+ y ≥ 1.
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(we have only two case above because if x, y ∈ T , then 0 ≤ x, y < 1, so

0 ≤ x+ y < 2).

Let us go back to the general case. Let G be a group, H a normal sub-

group, and suppose that we found a transversal T which itself is a subgroup

of G. Then for any t1, t2 ∈ T we have t1t2 ∈ T , so t1t2 = t1t2. Therefore,

the formula (!!!) for the operation ∗ on T simplifies to t1 ∗ t2 = t1t2. In other

words, in this case the newly defined operation ∗ on T coincides with the

group operation on G restricted to T . Therefore, we obtain the following

useful result as a consequence of Proposition 23.2.

Corollary 23.3. Let G be a group and H a normal subgroup of G. Assume

that there exists a transversal T of H in G such that T is also a subgroup.

Then the quotient group G/H is isomorphic to T (considered as a subgroup

of G).

We finish with two examples – in the first one there will exist a transversal

which is a subgroup, and in the second one there will be no such transversal.

Example 1: Let G = Z6 and H = 〈[3]〉 = {[0], [3]}. Then H has three

cosets: H = {[0], [3]}, [1] + H = {[1], [4]} and [2] + H = {[2], [5]}. The

simplest possible transversal {[0], [1], [2]} is not a subgroup, but there is

another one that works: T = {[0], [2], [4]} is also a transversal, and it is

clearly a subgroup (e.g. because it coincides with 〈[2]〉, the cyclic subgroup

generated by [2]).

Example 2: Now let G = Z and H = 3Z. We claim that no transversal

can be a subgroup here. Indeed, in this example, as we saw earlier, every

transversal has 3 elements. On the other hand, we know any subgroup of Z
is equal to nZ for some n, and

|nZ| =
{
∞ if n 6= 0
1 if n = 0

In particular, Z has no subgroups of order 3, so none of them could be a

transversal of H = 3Z.

23.4. Book references. The general references for this lecture are [Pinter,

Chapter 16] and [Gilbert, 4.6]. None of the books discusses transversals. In

Pinter’s terminology FTH (which he calls FHT) is a special case of what

we called FTH dealing with surjective homomorphisms (our Corollary 22.5).

Pinter proves FTH as a consequence of another result (Theorem 1 in Chapter

16) which is useful by itself.


