
22. Quotient groups I

22.0. Digression on the octic group. In this short section we provide an

alternative description of the octic group D8 which is more convenient for

computational purposes than the original description.

Claim 22.1. Let r ∈ D8 be a rotation by 90 degrees (in any direction) and

let s ∈ D8 be any reflection. Then

(a) D8 = {e, r, r2, r3, s, sr, sr2, sr3}
(b) The following relations hold in D8: r4 = s2 = e and rs = sr3.

Proof. (a) Let R = 〈r〉, the cyclic subgroup generated by r. Then 〈r〉 =

{e, r, r2, r3} since o(r) = 4; it is also clear that 〈r〉 is the set of all rotations

in D8.

Since |D8|
|R| = 8

4 , there are only two left cosets of R in D8, and one of

these cosets is R itself. Since s is not a rotation, s 6∈ R, so sR 6= R,

and hence sR is the other left coset. Since the union of all left cosets of a

subgroup should always be equal to the entire group, we have D8 = R∪sR =

{e, r, r2, r3} ∪ {s, r, sr2, sr3} = {e, r, r2, r3, s, sr, sr2, sr3}, as desired.

(b) The relations r4 = e and s2 = e are clear. To prove that rs = sr3

we argue as follows. Consider the element s−1rs, which is a conjugate of r.

By Problem 7 in HW#9, conjugate elements must have the same order, so

o(s−1rs) = o(r) = 4. The only elements of D8 which have order 4 are r and

r3 (the rotation by 90 degrees in the opposite direction), so we must have

s−1rs = r or s−1rs = r3.

If s−1rs = r3, then multiplying by s on the left, we get rs = sr3, as

desired, so we just have to explain why the other alternative (s−1rs = r)

cannot happen.

So suppose that rs = sr, so s and r commute. This means that any two

elements of D8 which can be expressed in terms of s and r must commute

with each other (since we can freely change the order of s and r in any

product containing only s and r). Since any element of D8 can be expressed

as risj for some i, j ∈ Z by (a) (including e = r0s0), it follows that any two

elements of D8 commute, that is, D8 is abelian, and we know that the latter

is false. �

Remark: One can show that the relations in D8 stated in (b) are defining

relations. Informally this means that any relation between r and s which
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holds in D8 can be deduced from those relations using just general group-

theoretic laws (and not specific properties of D8).

22.1. Definition of quotient groups. Let G be a group and H a subgroup

of G. Denote by G/H the set of distinct (left) cosets with respect to H.

In other words, we list all the cosets of the form gH (with g ∈ G) without

repetitions and consider each coset as a SINGLE element of the newly formed

set G/H. The set G/H (pronounced as G mod H) is called the quotient set.

Next we would like to define a binary operation ∗ on G/H such that

(G/H, ∗) is a group. It is natural to try to define the operation ∗ by the

formula

gH ∗ kH = gkH for all g, k ∈ G. (Q)

Before checking group axioms, we need to find out whether ∗ is at least well

defined. Our first result shows that ∗ is well defined whenever H is a normal

subgroup.

Theorem 22.2. Let G be a group and H a normal subgroup of G. Then

the operation ∗ given by (Q) is well defined.

Proof. We need to show that if g1, g2, k1, k2 ∈ G are such that g1H = g2H

and k1H = k2H, then g1k1H = g2k2H.

Recall that Theorem 19.2 (formulated slightly differently) asserts that

given x, y ∈ G we have xH = yH ⇐⇒ x−1y ∈ H. Thus, we need to show

the following implication

if g−11 g2 ∈ H and k−11 k2 ∈ H, then (g1k1)
−1g2k2 ∈ H (!)

So, assume that g−11 g2 ∈ H and k−11 k2 ∈ h. Then there exist h, h′ ∈ H such

that g−11 g2 = h and k−11 k2 = h′, and thus k2 = k1h
′. Hence

(g1k1)
−1g2k2 = k−11 g−11 g2k2 = k−11 hk1h

′ = (k−11 hk1)h
′.

Since H is normal, k−11 hk1 ∈ H by Theorem 20.2, and so (k−11 hk1)h
′ ∈ H.

Thus, we proved implication (!) and hence also Theorem 22.2. �

Remark: 1. The converse of Theorem 22.2 is also true, that is, if the

operation ∗ on G/H is well defined, then H must be normal. This fact is

left as an exercise, but we will not use it in the sequel.

2. There is a different approach to defining the group operation in quotient

groups (this approach is used, for instance, in Gilbert’s book). Eventually,

of course, this definition is the same, but initial justification is different. We

could define the operation ∗ by setting gH ∗kH to be the product of gH and

kH as subsets of G (this operation was introduced in Lecture 19 and will

be referred below as subset product). With this definition, it is clear that
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the product is well defined, but it is not clear whether G/H is closed under

it, that is, whether the subset product of two cosets is again a coset (and

in fact, the latter would be false unless H is normal). So, what one needs

to show with this approach is that if H is normal, then for any g, k ∈ H,

the subset product of gH and kH is equal to the coset gkH. This shows

both that G/H is closed under the subset product and also that the subset

product coincides with the product given by (Q) (under the assumption H

is normal).

Having proved that our operation on G/H is well defined (when H is

normal), we check the group axioms, which is quite straightforward.

Theorem 22.3. Let G be a group and H a normal subgroup of G. Then

the quotient set G/H is a group with respect to the operation ∗ defined by

(Q).

Proof. (G0) G/H is closed under ∗ by definition of cosets.

(G1) Associativity of ∗ follows from the associativity of the group

operation on G: for any g, k, l ∈ G we have

gH∗(kH∗lH) = gH∗klH = (g(kl))H = ((gk)l)H = gkH∗lH = (gH∗kH)∗lH.

(G2) The identity element ofG/H is the special cosetH = eH. Indeed,

for any g ∈ G we have gH ∗ H = gH ∗ eH = (ge)H = gH and similarly

H ∗ gH = gH.

(G3) Finally, the inverse of a coset gH is the coset g−1H. This is

because gH ∗ g−1H = (gg−1)H = eH = H, and similarly g−1H ∗ gH =

H. �

Now we proved that G/H is a group when H is normal, so we will start

using the terminology quotient group. From now on we will write products

in G/H as gH · kH (or even as gHkH), instead of gH ∗ kH.

22.2. Examples of quotient groups.

Example 1: Let G = D8 (the octic group) and H = 〈r2〉 = {e, r2}, the

cyclic subgroup generated by r2 (recall that r is a 90 degree rotation, so that

r2 is a 180 degree rotation). A direct computation shows that H lies in the

center Z(G) (in fact, H = Z(G) here, but we will not need the equality).

So by Example 2 in Lecture 20, H is normal in G, and thus we can form

the quotient group G/H. We can immediately say that

|G/H| = |G|
|H|

=
8

2
= 4.

Next we determine the elements of G/H, that is, (left) cosets of H.

H = eH = {e, r2} rH = {r, r3} sH = {s, sr2} srH = {sr, sr3}.
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Thus,

G/H = {H, rH, sH, srH}.

By describing elements of G/H in this way we are automatically choosing

a subset T of G which contains precisely one element from each coset (such

subset T is called a transversal; we will study this notion in more detail in

Lecture 23). In this example our choice is T = {e, r, s, sr}.

Note that this choice of T is not unique (e.g. T ′ = {e, r3, sr2, sr} would

have worked equally fine), but once we made a choice of T , we must stick to

it in the following sense: when we do computations in G/H, every element

of G/H must be put in the form tH where t ∈ T (in order for us to see

whether two given elements of G/H are equal or not).

In homework#11 you will be asked to compute the multiplication table for

G/H. Here we just do a sample computation – let us compute the products

sH · rH and rH · sH.

By definition of the operation in the quotient group and using the relation

rs = sr3 from Claim 22.1 we have

sH · rH = srH and rH · sH = rsH = sr3H.

In the first case we got the final answer; in the second case we did not since

sr3 is not in our transversal T . We need to find the (unique) element t ∈ T
such that tH = sr3H. To do this we look at our description of cosets and

locate the unique coset containing sr3.

We see that sr3 ∈ srH. Thus, srH ∩ sr3H 6= ∅, and since any two cosets

either coincide or are disjoint, we conclude that sr3H = srH. Thus, our

final answer is

sH · rH = srH and rH · sH = srH.

In particular, we see that sH and rH commute in G/H even though s and r

do not commute in G. Such phenomenon will happen very often in quotient

groups.

Example 2: Let G = Z (with addition) and H = 4Z. Here G is abelian,

so normality holds automatically. Since operation in G is +, we use additive

notation for cosets: g +H, with g ∈ G. It will be convenient to denote the

operation in the quotient group G/H by + as well.

In this example we cannot use the formula |G/H| = |G|
|H| since G is infinite,

but we can see directly that G/H has 4 elements:

H = 0 +H = {. . . ,−4, 0, 4, 8, . . .} 1 +H = {. . . ,−3, 1, 5, 9, . . .}

2 +H = {. . . ,−2, 2, 6, 10, . . .} 3 +H = {. . . ,−1, 3, 7, 11, . . .}
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Thus,

G/H = {H, 1 +H, 2 +H, 3 +H}.

In general, for any x ∈ Z we have x+H = {y ∈ Z : y ≡ x mod 4}.

Arguing as in Example 1, we compute the “multiplication” table (multi-

plication is in quotes since in this example we use additive notation):

H 1 +H 2 +H 3 +H
H H 1 +H 2 +H 3 +H

1 +H 1 +H 2 +H 3 +H H
2 +H 2 +H 3 +H H 1 +H
3 +H 3 +H H 1 +H 2 +H

This should look very familiar. We see immediately that the “multiplica-

tion” table for G/H coincides with the “multiplication” table for (Z4,+), up

to relabeling i + H 7→ [i]4. In particular, the quotient group G/H = Z/4Z
is isomorphic to Z4.

This makes perfect sense since, as we see from the above computation,

the cosets with respect to H are precisely the congruence classes mod 4, and

the operation + on G/H was defined by the same formula as addition in

Z4: in G/H we have (i+H) + (j +H) = (i+ j) +H (by formula (Q) from

the beginning of the lecture), and in Z4 we have [i]4 + [j]4 = [i+ j]4, and as

we just explained, x+H is just another name for [x]4.

It is clear that the same remains true when 4 is replaced by any integer

n ≥ 2:

Proposition 22.4. Let n ≥ 2 be an integer. The quotient group Z/nZ is

isomorphic to Zn via the map (i+ nZ) 7→ [i]n.

22.3. Quotient groups and homomorphisms. Our next goal is to show

that quotient groups are closely related to homomorphisms.

First let us show that each quotient group G/H naturally gives rise to a

homomorhism π : G→ G/H, called the natural projection from G to G/H.

Theorem 22.5. Let G be a group and H a normal subgroup of G. Define

the map π : G→ G/H by

π(g) = gH for all g ∈ G.

Then π is a surjective homomorphism and Kerπ = H.

Proof. (i) π is a homomorphism since π(gk) = gkH = gH · kH = π(g)π(k)

(where the middle equality holds by the definition of operation in G/H).

(ii) π is surjective since by definition every element of G/H is equal to

gH for some g ∈ G.
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(iii) Finally, Kerπ = {g ∈ G : gH = H} (since H is the identity

element of G/H). By Problem 3(a) in Homework#10 we have gH = H ⇐⇒
g ∈ H, so Kerπ = H, as desired. �

Now suppose that we are given two groups G and H and a homomorphism

ϕ : G → H. By Theorem 20.3, Kerϕ is a normal subgroup of G, and thus

we can consider the quotient group G/Kerϕ. The next theorem, called

the fundamental theorem of homomorphisms (abbreviated as FTH)

asserts that G/Kerϕ is always isomorphic to the range group ϕ(G).

Theorem (FTH). Let G, Q be groups and ϕ : G → Q a homomorphism.

Then

G/Kerϕ ∼= ϕ(G). (∗ ∗ ∗)

The proof and applications of FTH will be discussed in the next lecture.

At this point we just make two simple, but useful observations.

The first one is a special case of FTH dealing with surjective homo-

morphisms (in which case ϕ(G) = Q).

Corollary 22.6. Let G, Q be groups and ϕ : G→ Q a surjective homomor-

phism. Then G/Kerϕ ∼= Q.

Also note that FTH immediately implies the Range-Kernel Theorem. In-

deed, the isomorphism G/Kerϕ ∼= ϕ(G) implies that |G/Kerϕ| = |ϕ(G)|. If

G is finite, then |G/Kerϕ| = |G|
|Kerϕ| , so |G|

|Kerϕ| = |ϕ(G)|. Multiplying both

sides by |Kerϕ|, we get the Range-Kernel Theorem.

22.4. Book references. The general references for the first lecture are [Pin-

ter, Chapter 15] and [Gilbert, 4.6]. The exposition in Pinter may appear

quite different since he defines normal subgroups differently and also uses

right cosets instead of left cosets.


