
21. Symmetric groups II

21.1. Conjugacy classes. Let G be a group, and consider the following

relation ∼ on G: given f, h ∈ G, we put

f ∼ h ⇐⇒ there exists g ∈ G s.t. h = gfg−1.

Thus, in the terminology from Lecture 20, f ∼ h ⇐⇒ h is a conjugate of

f .

Definition. The relation ∼ is called the conjugacy relation.

Lemma 21.0. The conjugacy relation ∼ is an equivalence relation on G.

Proof. (i) Reflexivity: for every f ∈ G we have efe−1 = f , so f ∼ f (that

is, f is a conjugate of itself).

(ii) Symmetry: assume that f ∼ h, so that h = gfg−1 for some g ∈ G.

Then f = g−1hg = uhu−1 where u = g−1 ∈ G. Therefore, h ∼ f .

(iii) Transitivity: assume that f ∼ h and h ∼ k, so that h = g1fg
−1
1 and

k = g2hg
−1
2 for some g1, g2 ∈ G. Then k = g2g1fg

−1
1 g−12 = gfg−1 where

g = g2g1 ∈ G, so f ∼ k. �

Having established that ∼ is symmetric, we can safely use the terminology

“f and h are conjugate” instead of saying “h is a conjugate of f .”

Definition. The equivalence classes with respect to the conjugacy relation

are called the conjugacy classes of G. For each f ∈ G we denote its conjugacy

class by K(f). Thus,

K(f) = {h ∈ G : h = gfg−1 for some g ∈ G}.

Note that by the general properties of equivalence classes, conjugacy

classes form a partition of G, that is, distinct conjugacy classes are disjoint,

and the union of all conjugacy classes of G is the entire group G.

Warning: Conjugacy classes should not be confused with cosets.

21.2. Conjugacy classes in Sn. Computation of conjugacy classes in a

given group may be a complicated problem. However, conjugacy classes in

symmetric groups admit a very simple and explicit description.

We start with an example showing how conjugation works in Sn.

1

2

Example: Let n ≥ 3, let f = (1, 2, 3) ∈ Sn, and let g be some element

of Sn. Let us compute the conjugate gfg−1 = g(1, 2, 3)g−1.

To do this we have to track the image of each i ∈ {1, . . . , n} under the

composed map. First we analyze where gfg−1 sends g(1), g(2) and g(3).

We have

g(1)
g−1

−→ 1
f−→ 2

g−→ g(2)

g(2)
g−1

−→ 2
f−→ 3

g−→ g(3)

g(3)
g−1

−→ 3
f−→ 1

g−→ g(1).

Now take any i 6= g(1), g(2) or g(3). Then (since g is bijective) we have

g−1(i) 6= 1, 2 or 3, and therefore f(g−1(i)) = g−1(i). Thus we get

i
g−1

−→ g−1(i)
f−→ g−1(i)

g−→ i.

So, gfg−1 maps g(1) to g(2), g(2) to g(3), g(3) to g(1), and fixes all

other elements. Therefore, gfg−1 = g(1, 2, 3)g−1 = (g(1), g(2), g(3)).

It is not hard to see that similar formula is true in general: for any cycle

(i1, . . . , ik) and any g ∈ Sn we have

g(i1, . . . , ik)g−1 = (g(i1), . . . , g(ik)). (K1)

In other words, if f is a cycle of length k, then gfg−1 is also a cycle of length

k whose entries are obtained by applying g to the entries of f .

If f is a product of several cycles, the conjugate gfg−1 is obtained by

applying the same procedure to each cycle in the decomposition of f . This

is true because of the following formula:

if f = f1f2 . . . ft, then gfg−1 = (gf1g
−1)(gf2g

−1) . . . (gftg
−1). (K2)

Theorem 21.1. Let f, h ∈ Sn. Then f and h are conjugate in Sn if and

only if f and h have the same cycle type.

Proof. Formulas (K1) and (K2) immediately imply that for any g ∈ G,

the elements f and gfg−1 have the same cycle type. This proves the “⇒”

direction.

“⇐” We need to show that if f and h have the same cycle type, then there

exists g ∈ G such that h = gfg−1. The general proof involves somewhat

messy notations, so instead we illustrate it in a special case.

Let us take n = 7, f = (1, 2, 3)(4, 5) and h = (1, 3, 5)(2, 7). By (K1) and

(K2) for any g ∈ S7 we have gfg−1 = (g(1), g(2), g(3))(g(4), g(5)). Clearly,

to have the equality gfg−1 = h we can take any g ∈ S7 such that

g(1) = 1, g(2) = 3, g(3) = 5, g(4) = 2, g(5) = 7. (∗ ∗ ∗)

3

The only other restriction is that g is bijective. We have to decide what

g(6) and g(7) are. We have two “unused outputs”, 4 and 6, so we can set

g(6) = 4 and g(7) = 6, or g(6) = 6 and g(7) = 4 (both choices work). The

main point is that such g exists.

Remark: The condition (***) was sufficient, but not necessary to have

the equality gfg−1 = h. For instance, since (1, 3, 5) = (3, 5, 1), we could

let g(1) = 3, g(2) = 5 and g(3) = 1 (keeping the remaining values of g

unchanged) and still have the desired equality.

The algorithm for finding g which conjugates f into h can be made

even more direct. Let us write f and h in cycle form, including fixed points,

and put the expression for h right below the expression for f :

f = (1, 2, 3)(4, 5)(6)(7)

h = (1, 3, 5)(2, 7)(4)(6)

Then the element g, which sends each integer in the first line to the integer

in the second line right below it, has the desired property h = gfg−1 (in

our example we get g(1) = 1, g(2) = 3, g(3) = 5, g(4) = 2, g(5) = 7,

g(6) = 4 and g(7) = 6). Since both lines contain every integer from 1 to 7

precisely once, such g is bijective. Note that in cycle form this g is given by

g = (1)(2, 3, 5, 7, 6, 4)

This alternative description clearly shows that the algorithm described in

this example can be applied to any two elements f and h of the same cycle

type. �

As an immediate consequence of Theorem 21.1 we obtain an explicit de-

scription of conjugacy classes in Sn:

Corollary 21.2. For every f ∈ Sn, its conjugacy class K(f) consists of all

elements in Sn which have the same cycle type as f .

Example: Describe conjugacy classes in S4:

cycle type an element of that type f the conjugacy class K(f) |K(f)|
1 + 1 + 1 + 1 e e 1

2 + 1 + 1 (1, 2)
(1, 2), (1, 3), (1, 4),

6
(2, 3), (2, 4), (3, 4)

2 + 2 (1, 2)(3, 4) (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3) 3

3 + 1 (1, 2, 3)
(1, 2, 3), (1, 3, 2), (1, 2, 4), (1, 4, 2)

8
(1, 3, 4), (1, 4, 3), (2, 3, 4), (2, 4, 3)

4 (1, 2, 3, 4)
(1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 2, 4)

6
(1, 3, 4, 2), (1, 4, 2, 3), (1, 4, 3, 2)

Note that 1 + 6 + 3 + 8 + 6 = 24 = |S4|, as should be the case since

conjugacy classes of a group G form a partition of G.

4

21.3. Normal subgroups in Sn. Recall the statement of Theorem 20.2

(conjugation criterion of normality): Let G be a group and H a subgroup

of G. Then

H is normal in G ⇐⇒ for every h ∈ H and g ∈ G we have ghg−1 ∈ H.

In other words, H is normal in G ⇐⇒ for every h ∈ H, all conjugates

of h (by elements of G) lie in H.

Having introduced the notion of a conjugacy class, we can now state a

useful reformulation of this theorem.

Theorem 21.3. Let G be a group and H a subgroup of G. Then H is

normal in G ⇐⇒ for every conjugacy class K(x) in G, either K(x) ⊆ H

or K(x) ∩H = ∅. In other words,

H is normal in G ⇐⇒ H is a union of (some) conjugacy classes of G.

Proof. Let us prove the forward direction (“⇒”); the backward direction is

analogous. So, assume that H is normal in G. We need to show that if

x ∈ G is such that K(x) ∩H 6= ∅, then K(x) ⊆ H.

If K(x) ∩ H 6= ∅, then there exists h ∈ K(x) ∩ H, and thus K(h) ∩
K(x) 6= ∅ (since h ∈ K(h)), that is, the conjugacy classes of h and x overlap.

But any two conjugacy classes in G are either disjoint or coincide, so we must

have K(x) = K(h). By definition, K(h) = {y ∈ G : y = ghg−1 for some g ∈
G}. Since h ∈ H and H is normal, Theorem 20.2 implies that K(h) ⊆ H,

and therefore K(x) = K(h) ⊆ H, which is what wanted to prove. �

Warning: Theorem 21.3 does NOT say that a union of conjugacy classes

is always a normal subgroup. This is because a union of conjugacy classes

may not be a subgroup at all. What it says is that if a union of conjugacy

classes is a subgroup, then this subgroup is normal, and moreover, all normal

subgroups can be obtained in this way.

Example: Find all normal subgroups in G = S4.

We found earlier that S4 has 5 conjugacy classes K1,K2,K3,K4,K5 whose

sizes are n1 = |K1| = 1, n2 = |K2| = 3, n3 = |K3| = 6, n4 = |K4| = 8

and n5 = |K5| = 6. Now let H be a normal subgroup of S4. Then by

Theorem 21.3, H is the union of some of the K ′is, so |H| is the sum of some

of the ni’s (since distinct conjugacy classes are disjoint). Moreover,

(i) n1 = 1 must be included since H must contain e (and e ∈ K1);

(ii) the sum of the ni’s we use (which is equal to |H|) must divide 24 =

|S4| by Lagrange theorem.

5

Below we consider all possible collections of ni’s which include n1 and elimi-

nate those which do not satisfy conidition (ii) (that is, where the sum is not

a divisor of 24).

collection sum candidate?
1 1 yes

1,3 1+3=4 yes
1,6 1+6=7 no
1,8 1+8=9 no

1,3,6 1+3+6=10 no
1,3,8 1+3+8=12 yes

It is easy to see that in all other collections of ni’s, the sum will be > 12,

so the only way we can get a divisor of 24 is if the sum is equal to 24 (which

means that we used all ni’s).

Summarizing, any normal subgroup H must be equal to one of the fol-

lowing.

(1) H = K1, in which case |H| = n1 = 1

(2) H = K1 ∪K2, in which case |H| = n1 + n2 = 1 + 3 = 4

(3) H = K1∪K2∪K4, in which case |H| = n1 +n2 +n4 = 1+3+8 = 12

(4) H = ∪5i=1Ki, in which case |H| =
∑5

i=1 ni = 24.

As explained above, each of the sets (1)-(4) is either a normal subgroup

or not a subgroup at all, so we only need to check whether these sets are

subgroups.

In case (1) we have H = {e} (which is a subgroup), and in case (4)

H = G = S4 (which is also a subgroup). Of course, we could say right

away that {e} and G are normal subgroups of G – this would be true in any

group.

In case (2) we have H = {e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}. This is

a subgroup by direct verification. This subgroup is sometimes denoted by

V4 and called the Klein four group. It is a group of order 4 isomorphic to

Z2 × Z2; note that the Klein four group actually arose as the range of the

homomorphism from the proof of Cayley’s theorem applied to Z2 × Z2.

In case (3) we have

H = {e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), (1, 2, 3), (1, 3, 2), (1, 2, 4), (1, 4, 2),

(1, 3, 4), (1, 4, 3), (2, 3, 4), (2, 4, 3)}.

In this case we note that H consists precisely of all even permutations in

S4, so H = A4 is a subgroup.

So, the final answer is that S4 has 4 normal subgroups: {e}, V4, A4 and S4.

Note that the more interesting part of the argument was not showing that

6

these subgroups are normal, but showing that there are no other normal

subgroups.

Also note that in this example we did not get any unions of conjugacy

classes which are not subgroups but which cannot be eliminated by condi-

tions (i)-(ii) above. This is pretty rare, and usually there will be some “false

positives” which will have to be eliminated later.

Exercise. Solve the corresponding problem for S5.

Since S5 is much larger than S4, explicitly listing all permutations in each

conjugacy classes is no longer a good option; instead you should find a way

to count the number of permutations in each conjugacy class (equivalently,

the number of permutations of each cycle type). Here we illustrate how to

do this for two cycles types in S5.

Let us start with 5-cycles (that is, cycles of length 5). A naive guess is

that there should be 5! = 120 such cycles – this, however, is easily seen to

be wrong since 120 is the total number of permutations in S5, and not all of

them are 5-cycles. The reason 120 is not the right answer is that we can shift

the integers cyclically within the cycle without changing the permutation.

Note that if (i1, i2, i3, i4, i5) ∈ S5 is a 5-cycle, then each integer from 1 to 5

must appear in it, so after a cyclic shift we can assume that the cycle starts

with 1, that is, i1 = 1. After that we have 4 choices for i2, 3 choices for i3

etc.; in total 4! = 24 choices. It is also clear that any two 5-cycles starting

with 1 represent the same element of S5 if and only if they are identical. So,

our 24 choices yield 24 distinct elements in S5. Summarizing, we found that

the number of 5-cycles in S5 is 24.

Next we turn to cycle type 4 + 1 (a 4-cycle and a fixed point). Here

we have 5 choices to decide which element will be the fixed point and, once

the fixed point has been chosen, 3! = 6 ways to choose the 4-cycle (by the

same logic is above). In total we get that there are 5 · 6 = 30 elements in

the cycle type 4 + 1.

Enumeration of elements in other cycle types is similar (though not com-

pletely analogous). Special care should be taken with cycle type 2+2 (prod-

uct of two disjoint transpositions) – do you see why?

