
19. Cosets

19.1. Products of subsets in a group.

Definition. Let G be a group and A and B subsets of G. The product of

A and B is the subset AB of G defined by

AB = {x ∈ G : x = ab for some a ∈ A, b ∈ B.}

The following lemma is left as a homework exercise:

Lemma 19.1. The multiplication of subsets in a group is associative, that

is, if A,B and C are subsets of a group G, then (AB) · C = A · (BC).

Definition. Let G be a group and H a subgroup of G. If g is an element

of G, the set gH = {g}H (the product of subsets {g} and H) will be called

a left coset of H. In other words,

gH = {x ∈ G : x = gh for some h ∈ H}

(here g is fixed and h ranges over the entire subgroup H.)

From now on a coset will mean a left coset.

Below we collect some basic properties of cosets.

Claim. Let G be a group and H a subgroup of G.

(cos1) Every element of G lies in one of the cosets of H. This is because

g = g · e ∈ gH for every g ∈ G.

(cos2) One of the cosets of H is H itself. This is because H = eH.

(cos3) If H is finite, then |gH| = |H| for every g ∈ G. Indeed, suppose

that k = |H| and H = {h1, . . . , hk}. By cancellation law, elements

gh1, . . . , ghk are distinct, so |gH| = |{gh1, . . . , ghk}|.
(cos4) Any two cosets of H are either the same or disjoint. In other words,

for any g, k ∈ G either gH = kH or gH ∩ kH = ∅.

Property (cos4) is a special case of the following more general result:

Theorem 19.2. Let G be a group, H a subgroup of G and g, k ∈ G.

(i) If g−1k ∈ H, then gH = kH

(ii) If g−1k 6∈ H, then gH ∩ kH = ∅.

Proof. (i) We are given that g−1k = h for some h ∈ H. Hence k = gh, and

therefore

kH = (gh)H = g(hH) ⊆ gH.
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Here the equality (gh)H = g(hH) holds by Lemma 19.1, and inclusion

g(hH) ⊆ gH follows from hH ⊆ H which, in turn, holds since H is closed

under group operation.

Thus, kH ⊆ gH. Next note that by product inverse formula k−1g =

(g−1k)−1 = h−1 ∈ H (since H is closed under inversion). Thus, we can

repeat the above argument with roles of g and k switched and conclude that

gH ⊆ kH.

Thus, we showed that kH ⊆ gH and gH ⊆ kH, and so kH = gH.

(ii) We will prove this by contrapositive. Suppose that gH ∩ kH 6= ∅, so

there exists x ∈ gH ∩ kH. This means that x = gh1 and x = kh2 for some

h1, h2 ∈ H. Hence kh2 = gh1. Multiplying by g−1 on the left and h−12 on

the right, we get g−1k = h1h
−1
2 ∈ H, as desired. �

Corollary 19.3. Let G be a group, H a subgroup of G and g, k ∈ G. Then

gH = kH ⇐⇒ g−1k ∈ H.

Proof. The backwards direction holds by Theorem 19.2(i). For the forward

direction, suppose that gH = kH. If g−1k 6∈ H, then gH ∩ kH = ∅ by

Theorem 19.2(ii) which contradicts gH = kH. Hence g−1k ∈ H. �

19.2. Proof of Lagrange Theorem.

Lagrange Theorem. Let G be a finite group and H a subgroup of G. Then

|H| divides |G|.

Proof. Let g1H, . . . , gkH be the complete list of cosets of H without repeti-

tion. Then G = g1H ∪ . . . ∪ gkH by (cos1) and giH ∩ gjH = ∅ for i 6= j by

(cos3). Therefore, |G| =
∑k

i=1 |giH|.
Finally, |giH| = |H| for each i by (cos3), whence |G| = k|H|, so |H|

divides |G|. �

Definition. Let G be a group and H a subgroup of G. The number of

distinct cosets of H is called the index of H in G and denoted by [G : H].

The proof of Lagrange theorem shows that when G is a finite group, the

index of a subgroup is given by the formula

[G : H] =
|G|
|H|

.

19.3. Examples of coset multiplication.

Example 1. G = S3 = permutations of {1, 2, 3}, H = 〈(1, 2)〉 = {e, (1, 2)}.
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In this example |G| = 6, |H| = 2, so H should have 3 = 6
2 = |G|

|H| cosets.

This is confirmed by an explicit computation below.

g gH
e {e, (1, 2)}

(1, 2) {(1, 2), (1, 2)(1, 2)} = {(1, 2), e}
(1, 3) {(1, 3), (1, 3)(1, 2)} = {(1, 3), (1, 2, 3)}
(2, 3) {(2, 3), (2, 3)(1, 2)} = {(2, 3), (1, 3, 2)}

(1, 2, 3) {(1, 2, 3), (1, 2, 3)(1, 2)} = {(1, 2, 3), (1, 3)}
(1, 3, 2) {(1, 3, 2), (1, 3, 2)(1, 2)} = {(1, 3, 2), (2, 3)}

The distinct cosets of H are {e, (1, 2)}, {(1, 3), (1, 2, 3)} and {(2, 3), (1, 3, 2)}.

Example 2. Let G = (Z,+), H = 3Z = {3k : k ∈ Z}. Here the group

operation is addition, so cosets of H are subsets of the form g + H with

g ∈ G.

We have 0 + H = H = {3k : k ∈ Z}, 1 + H = {1 + 3k : k ∈ Z} and

2 + H = {2 + 3k : k ∈ Z}. These 3 cosets cover the entire Z, so there are 3

distinct cosets.

In general, for any i ∈ Z we have i + H = {x ∈ Z : x ≡ i mod 3} = [i]3,

the congruence class of i mod 3.

19.4. Book references. This lectures follows [Gilbert, 4.4] pretty closely.

Pinter introduces cosets in Chapter 13, although some of their basic prop-

erties are established later in Chapter 15. Note that Pinter primarily works

with right cosets! (the theory of right cosets is completely analogous, but

some statements like Theorem 19.2 should be suitably modified if left cosets

are replaced by right cosets).


