
17. Symmetric groups

Fix an integer n > 1, and let Sn be the set of all bijective functions

f : {1, . . . , n} → {1, . . . , n}. As discussed in Lecture 10, Sn is a group

with respect to composition. The groups Sn are called symmetric groups,

and elements of Sn are called permutations. Sometimes symmetric groups

are also called permutation groups, but this is not an accurate terminology.

Usually by permutation groups one means a subgroup of a symmetric group

(thus, symmetric groups are special kinds of permutation groups).

We begin by computing the order of Sn. By definition |Sn| is the number

of ways to choose a bijective function f : {1, . . . , n} → {1, . . . , n}.
Note that f(1) could be any natural number from 1 to n, so there are n

ways to choose f(1); once f(1) is chosen, f(2) can be any number distinct

from f(1), so there are n − 1 choices for f(2), then n − 2 choices for f(3)

etc. Finally, we have just 1 choice for the last element f(n). Overall we

have n(n− 1) · . . . · 2 · 1 = n! choices. Thus, |Sn| = n!.

17.1. Cycle decompositions. There are two standard ways to represent

elements of Sn. The first one is two-line notation introduced in Lecture 10.

For instance, the element of S6 defined by f(1) = 4, f(2) = 6, f(3) = 3,

f(4) = 5, f(5) = 1 and f(6) = 2 has the following representation by two-line

notation:

f =

(
1 2 3 4 5 6

f(1) f(2) f(3) f(4) f(5) f(6)

)
=

(
1 2 3 4 5 6
4 6 3 5 1 2

)
.

The second representation is the cycle decomposition which we now define.

Given f ∈ Sn, the set {1, 2, . . . , n} can be decomposed as a disjoint union

of subsets such that f cyclically permutes elements of each subset. For

instance, for the above element f ∈ S6 there will be three such subsets:

{1, 4, 5}, {2, 6} and 3 since f permutes elements 1, 2, 3, 4, 5, 6 as follows:

1
f−→ 4

f−→ 5
f−→ 1; 2

f−→ 6
f−→ 2 and 3

f−→ 3.

Symbolically we write f = (1, 4, 5)(2, 6)(3). The expression (1, 4, 5)(2, 6)(3)

is called the cycle decomposition of f , and the “parts” of this decomposi-

tion, namely (1, 4, 5), (2, 6) and (3), are called the cycles of f .

Each element f can be recovered from its cycle decomposition: if we are

given the cycle decomposition of some f ∈ Sn and i ∈ {1, . . . , n}, and we

want to compute f(i), we first find the cycle which contains i. If i is not the

last element in its cycle (counting from left to right), then f(i) is the next
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element in the same cycle, and if i is the last element in its cycle, then f(i)

is the first element in the same cycle.

Note that the order of cycles in a cycle decomposition of a given element

does not matter: for instance (1, 4, 5)(2, 6)(3) = (2, 6)(1, 4, 5)(3). Also we

can cyclically permute elements within each cycle, e.g. (1, 4, 5) = (4, 5, 1) =

(5, 1, 4). However, (1, 4, 5) 6= (1, 5, 4).

Cycles of length 1 are called fixed points. For instance, the above f

has one fixed point, namely 3. It is a standard convention to omit fixed

points from the cycle decomposition, that is, write (1, 4, 5)(2, 6) instead of

(1, 4, 5)(2, 6)(3) (it is assumed that the missing elements are fixed).

17.2. Products of disjoint cycles. The expression like (1, 4, 5)(2, 6) for

an element of S6 can be interpreted in two a priori different ways. First,

we can think of it precisely as described above: (1, 4, 5)(2, 6) is the element

f ∈ S6 whose cycle decomposition is (1, 4, 5)(2, 6) = (1, 4, 5)(2, 6)(3). On

the other hand, we can consider two other elements g, h ∈ S6:

g = (1, 4, 5) = (1, 4, 5)(2)(3)(6) and h = (2, 6) = (2, 6)(1)(4)(3)(5).

Then one can also interpret (1, 4, 5)(2, 6) as the product of g and h in S6

(that is, the composition of g and h). A natural question is whether these

two interpretations are the same, that is, whether f = gh.

Fortunately, the answer to this question is yes, as one can check by

straightforward verification in the above example (the proof in the general

case is essentially the same).

Definition. An element f ∈ Sn is called a cycle if the cycle decomposition

of f has just one cycle (excluding fixed points).

For instance, (1, 4, 5) ∈ S6 is a cycle of length 3 and (2, 6) ∈ S6 is a cycle

of length 2 in S6, while (1, 4, 5)(2, 6) is not a cycle.

Definition. Two cycles u = (i1, . . . , ik) and v = (j1, . . . , jl) are called

disjoint if no integer appears in both u and v.

Equivalence of two possible interpretations of a cycle decomposition yields

the following theorem:

Theorem 17.1. Any element of Sn can be written as a product of disjoint

cycles.

Remark: Here we allow the empty product which by convention represents

the identity element e ∈ Sn.

Let us now see how to multiply two non-disjoint cycles.
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Example 1. Let f = (1, 2, 3, 5, 6) and g = (1, 2, 3, 6, 4) be elements of S6.

Write fg as a product of disjoint cycles (equivalently, find the cycle decom-

position of fg).

We track the image of each element of {1, 2, 3, 4, 5, 6} under the compo-

sition fg (recall that we first apply g and then f). We have 1
g−→ 2

f−→ 3;

3
g−→ 6

f−→ 1. This completes the first cycle of fg, namely (1, 3).

2
g−→ 3

f−→ 5; 5
g−→ 5

f−→ 6; 6
g−→ 4

f−→ 4; 4
g−→ 1

f−→ 2. Thus, the

second cycle of fg is (2, 5, 6, 4), and the final answer is fg = (1, 3)(2, 5, 6, 4).

17.3. Orders of elements in Sn.

Claim 17.2. A cycle of length k has order k (as an element of Sn)

We do not give a formal proof of this result, but illustrate it using two

examples (the second example essentially shows why the result is true in

general).

Let f = (1, 3) ∈ S4. Then f 6= e, but f2 = (1, 3)(1, 3). Thus, 1
f−→ 3

f−→
1 and 3

f−→ 1
f−→ 3, so f2 fixes 1 and 3, and clearly f2 must fix 2 and 4

(since f fixes 2 and 4). Thus f2 fixes every element of {1, 2, 3, 4}, so f2 = e.

Let f = (1, 3, 4, 6) ∈ S6. Note that fk will send each i ∈ {1, 3, 4, 6} to the

element which appears k positions to the right of i (in the “cyclic sense”).

Thus f2 = (1, 4)(3, 6), f3 = (1, 6, 3, 4) and f4 = e.

Now let us see compute the order of an element which is not a cycle.

Example 2. Let f = f1f2f3 ∈ S9 where f1 = (1, 3, 4, 6), f2 = (2, 7) and

f3 = (5, 8, 9). Compute o(f).

By definition of order, we need to find the smallest positive n s.t. fn = e.

We know by Claim 17.2 that o(f1) = 4, o(f2) = 2 and o(f3) = 3.

Since f1, f2 and f3 are disjoint cycles, it is clear that they commute with

each other, so fn = (f1f2f3)
n = fn

1 f
n
2 f

n
3 for every n ∈ N. Also since

f1, f2 and f3 move different elements, it is clear that fn = e ⇐⇒ fn
1 =

fn
2 = fn

3 = e. Thus, we are looking for the smallest positive n such that

fn
1 = fn

2 = fn
3 = e.

The following result is an immediate consequence of Theorem 13.1: if g

is an element of some group G and d = o(g) is finite, then for any k ∈ N we

have gk = e ⇐⇒ d | k (that is, a power of g is equal to e ⇐⇒ the exponent

is a multiple of the order of g). Applying this result in our situations, we get

that fn
1 = fn

2 = fn
3 = e ⇐⇒ 4 = o(f1) | n, 2 = o(f2) | n and 3 = o(f3) | n.

By definition, the smallest n with this property is LCM(2, 3, 4) = 12.
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Applying the same logic to an arbitrary element of Sn, we obtain the

following theorem:

Theorem 17.3. Let f ∈ Sn, and suppose f is a product of disjoint cycles

of lengths n1, . . . , nr. Then o(f) = LCM(n1, . . . , nr).

17.4. Cayley’s Theorem. In this section we prove the following remark-

able theorem:

Theorem 17.4 (Cayley’s Theorem). Let G be a finite group of order n.

Then G is isomorphic to a subgroup of Sn.

Remark: A more general version of Cayley’s theorem (which can be proved

by the same argument) asserts that any group G is isomorphic to a subgroup

of Sym(G) (the group of all bijective functions from G to itself). We restrict

ourselves to finite groups primarily for notational simplicity.

Proof. First of all note that to prove the theorem it will be sufficient to

construct an injective homomorphism ϕ : G→ Sn. Indeed, if ϕ : G→ Sn is

any homomorphism, we can also think of ϕ as a homomorphism from G to

ϕ(G) (recall from Lecture 16 that ϕ(G) is always a subgroup), and ϕ will be

surjective as a map from G to ϕ(G). If the original ϕ is also injective, it will

still be injective as a map from G to ϕ(G); thus ϕ will be an isomorphism

from G to ϕ(G). Thus, G is isomorphic to ϕ(G), and by construction ϕ(G)

is a subgroup of Sn.

We define an injective homomorphism ϕ : G → Sn as follows. Denote

the elements of G by symbols g1, g2, . . . , gn (the order does not matter).

Take any element g ∈ G, and consider the sequence gg1, gg2, . . . , ggn (note

that this is precisely the g-row of the multiplication table of G). By Su-

doku property the sequence gg1, gg2, . . . , ggn contains the same elements as

g1, g2, . . . , gn, but in a (possibly) different order. Formally this means that

there exists a bijection f : {1, 2, . . . , n} → {1, 2, . . . , n} such that ggk = gf(k)

for all 1 ≤ k ≤ n. We can think of f as an element of Sn (note that f de-

pends only of g), and define ϕ : G → Sn by ϕ(g) = f . In other words, we

define ϕ(g) to be the unique element of Sn such that

ggk = g(ϕ(g))(k) for all1 ≤ k ≤ n (∗ ∗ ∗)

It is important to understand the meaning of the expression (ϕ(g))(k). First

we apply ϕ to g to get an element of Sn which in turn is a function from

{1, 2, . . . , n} to {1, 2, . . . , n}. Then we apply this function to an integer k,

and the result is also an integer between 1 and n.
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We now prove that ϕ given by (***) is an injective homomorphism. First

we check that ϕ is a homomorphism, that is, ϕ(gh) = ϕ(g)ϕ(h) for all g, h ∈
Sn. Note that both ϕ(gh) and ϕ(g)ϕ(h) are elements of Sn (here ϕ(g)ϕ(h)

is the composition of ϕ(g) and ϕ(h)), that is, functions from {1, 2, . . . , n} to

{1, 2, . . . , n}. By definition two functions are equal to each other if and only

if they have the same value at every input, so we need to check the equality

(ϕ(gh))(k) = (ϕ(g)ϕ(h))(k) for every k ∈ N.

By the definition of ϕ in (***) we have (gh)gk = g(ϕ(gh))(k). On the other

hand, hgk = g(ϕ(h))(k). Let i = (ϕ(h))k, so that hgk = gi. Applying (***)

with k replaced by i, we get ggi = gϕ(g)(i). Therefore, (gh)hk = g(hgk) =

ggi = gϕ(g)(i) = gϕ(g)((ϕ(h))k) = g(ϕ(g)ϕ(h))(k) (where the last step holds since

ϕ(g)ϕ(h) is the composition of ϕ(g) and ϕ(h) as functions).

Thus, we obtained two different expressions for (gh)gk, and setting them

equal to each other, we conclude that g(ϕ(gh))(k) = g(ϕ(g)ϕ(h))(k), and therefore

(ϕ(gh))(k) = (ϕ(g)ϕ(h))(k), as desired.

Thus, we proved that ϕ is a homomorphism. By Theorem 16.3, to prove

that ϕ is injective, it suffices to show that Ker (ϕ) = {e}. Since Ker (ϕ)

always contains e, we just need to show that ϕ(g) = id forces g = eG (here

id is the identity permutation which is the identity element of Sn). So take

any g ∈ G such that ϕ(g) = id. This means that (ϕ(g))(k) = k for all k, so

ggk = g(ϕ(g))(k) = gk for all k. Already knowing this equation for a single k

forces g = eG by cancellation law. Thus, Ker (ϕ) = {e}, so ϕ is injective. �

We shall now explicitly compute the homomorphism from the proof of

Cayley’s theorem in a specific example.

Example 3. Let G = Z2×Z2, and let ϕ : G→ S4 the homomorphism from

the proof of Cayley’s theorem. Compute ϕ(G).

Let g1 = ([0], [0]) be the identity element of G, and let g2, g3 and g4 denote

the other three elements (the order does not matter). By direct computation

(or by an argument from Lecture 18), the multiplication table of G is

g1 g2 g3 g4
g1 g1 g2 g3 g4
g2 g2 g1 g4 g3
g3 g3 g4 g1 g2
g4 g4 g3 g2 g1
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By definition, to determine ϕ(g) in two-line notation, we simply look at

the sequence of indices in the g-row of the multiplication table. Thus

ϕ(g1) =

(
1 2 3 4
1 2 3 4

)
ϕ(g2) =

(
1 2 3 4
2 1 4 3

)
ϕ(g3) =

(
1 2 3 4
3 4 1 2

)
ϕ(g4) =

(
1 2 3 4
4 3 2 1

)
.

Converting to the cycle notation, we get

ϕ(g1) = id, ϕ(g2) = (1, 2)(3, 4), ϕ(g3) = (1, 3)(2, 4), ϕ(g4) = (1, 4)(2, 3).

Thus, we conclude that the four elements {id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}
form a subgroup of S4 isomorphic to Z2×Z2. This subgroup actually has a

special name, the Klein 4-group.

17.5. Book references. The general references for the first 3 sections in

lecture are [Pinter, Chapter 8] and [Gilbert, 4.1]. Cayley’s Theorem is proved

at the end of [Pinter, Chapter 9] as well as [Gilbert, 4.2].


