
16A. Direct products and Classification of Finite Abelian

Groups

16A.1. Direct products.

Definition. Let G and H be groups. Their direct product is the group

G×H defined as follows. As a set G×H = {(g, h) : g ∈ G, h ∈ H} is just

the usual Cartesian product of G and H (the set of ordered pairs where the

first component lies in G and the second component lies in H). The group

operation on G×H is defined by the formula

(g1, h1)(g2, h2) = (g1g2, h1h2) for all g1, g2 ∈ G and h1, h2 ∈ H.

Here g1g2 is the product of g1 and g2 in G and h1h2 is the product of h1

and h2 in H.

Verification of group axioms for G ×H is straightforward. The identity

element of G × H is the pair (eG, eH) where eG is the identity element of

G and eH is the identity element of H. Inverses in G×H are given by the

formula

(g, h)−1 = (g−1, h−1).

The above definition easily generalizes to the case of more than 2 groups.

Given any finite sequence of groups G1, . . . , Gk, we define their direct prod-

uct G1 × . . . × Gk to be the set of all k-tuples (g1, . . . , gk) with gi ∈ Gi for

all i, with group operation defined by

(g1, . . . , gk)(g′1, . . . , g
′
k) = (g1g

′
1, . . . , gkg

′
k) where gi, g

′
i ∈ Gi for all i.

Lemma 16A.1. The following hold:

(a) For any two groups G and H, the direct products G×H and H ×G

are isomorphic. More generally, if G1, . . . , Gk are any groups and

i1, . . . , ik is any permutation of 1, . . . , k, then

G1 × . . .×Gk
∼= Gi1 × . . .×Gik .

(b) For any three groups G,H and K the groups G ×H ×K and G ×
(H×K) are isomorphic. More generally, for any sequence of groups

G1, . . . , Gk we have G1 ×G2 × . . .×Gk
∼= G1 × (G2 × . . .×Gk).

Sketch of proof. (a) Define ϕ : G×H → H ×G by ϕ((g, h)) = (h, g). Then

ϕ is clearly bijective, and it is straightforward to check that ϕ preserves

the group operation. In the more general setting an isomorphism between
1
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G1 × . . .×Gk and Gi1 × . . .×Gik is given by the formula ϕ((g1, . . . , gk)) =

(gi1 , . . . , gik).

(b) Similarly to (a), the map ϕ : G × H × K → G × (H × K) given

by ϕ((g, h, k)) = (g, (h, k)) is an isomorphism. More generally, the map

ϕ : G1×G2× . . .×Gk → G1× (G2× . . .×Gk) given by ϕ((g1, g2, . . . , gk)) =

(g1, (g2, . . . , gk)) is an isomorphism. �

If G1, . . . , Gk are finite groups, the order of their direct product is equal

to the product of the orders:

(16A.1) |G1 ×G2 × . . .×Gk| = |G1| · |G2| · . . . · |Gk|.

Indeed, if we want to construct an element of G1 × . . . × Gk, we have |G1|
choices for the first component, |G2| choices for the second component etc.

and finally |Gk| choices for the kth component. Since choices at each step

are made independently, the total number of choices is |G1| · |G2| · . . . · |Gk|.

16A.2. Classification Theorem of Finite Abelian Groups. If G1, . . . , Gk

are abelian groups, it is clear from the definition that their direct product

G1 × . . . × Gk is also abelian. In particular, given any integers n1, . . . , nk

with ni ≥ 2 for all i, the direct product Zn1 × . . .× Znk
is abelian (as usual

by Zn we mean Zn with respect to addition). It turns out that every finite

abelian group is isomorphic to a group of this form.

Theorem 16A.2 (Fundamental Theorem of Finite Abelian Groups, weak

form). Let G be a finite abelian group with |G| ≥ 2. Then there exist integers

n1, . . . , nk such that G ∼= Zn1 × . . .× Znk
.

Later in the lecture we will refine the above statement, in particular,

adding a suitable uniqueness part. Let us see some immediate applications

of this Theorem to classification of abelian groups of small order.

Example 1. Let G be an abelian group of order 4. Since |Zn1× . . .×Znk
| =

n1 . . . nk by (16A.1) and the only ways to write 4 as a product of integers

≥ 2 are 4 itself and 2 · 2, Theorem 16A.2 implies that G must be isomorphic

to Z4 or Z2 × Z2.

Remark: In Lecture 18 we will show (using a different argument) that

actually every group of order 4 is isomorphic to Z4 or Z2×Z2, so in particular,

every group of order 4 is abelian.

Recall that in Lecture 13 we have considered two abelian groups of or-

der 4 which do not appear in the form Zn1 × . . . × Znk
, namely Z×5 =

{[1], [2], [3], [4]} (invertible elements of Z5 with respect to multiplication)
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and Z×8 = {[1], [3], [5], [7]}. By the above argument each of those groups

must be isomorphic to Z4 or Z2 × Z2, but which one?

We claim that Z×5 ∼= Z4 while Z×8 ∼= Z2 × Z2. Indeed, as verified in

Lecture 13, Z×5 is cyclic, hence Z×5 ∼= Z4 by Theorem 15.2. On the other

hand (again by Lecture 13), Z×8 is not cyclic, so it cannot be isomorphic to

Z4 (since a group isomorphic to a cyclic group must be cyclic). Therefore,

Z×8 must be isomorphic to Z2 × Z2.

Example 2. Let G be an abelian group of order 6. As in previous example,

by Theorem 16A.2 G must be isomorphic to Z6 or Z2×Z3. We do not need

to include Z3 × Z2 in the list since Z3 × Z2
∼= Z2 × Z3 by Lemma 16A.1(a);

however, it turns out that the above list already includes a redundancy as

Z2 × Z3 is isomorphic to Z6.

Since operation in both Z2 and Z3 is denoted by +, we will use additive

notation in Z2×Z3 as well (this is a standard convention); in particular, for

an element g ∈ Z2 × Z3 and l ∈ Z we will write lg instead of gl.

By Theorem 15.2, to prove that Z2 × Z3
∼= Z6, it suffices to prove that

Z2 × Z3 is cyclic. We claim that g = ([1], [1]) is a generator of Z2 × Z3.

Indeed, for any l ∈ Z we have

lg = g + . . . + g︸ ︷︷ ︸
l times

= ([1] + . . . + [1]︸ ︷︷ ︸
l times

, [1] + . . . + [1]︸ ︷︷ ︸
l times

) = ([l], [l]),

and ([l], [l]) is equal to ([0], [0]) if and only if l is both a multiple of 2 and

a multiple of 3, that is, l is a multiple of 6. Thus, the smallest positive l

such that lg = ([0], [0]) is l = 6, so o(g) = 6 = |Z2 × Z3|, so g is indeed a

generator.

The result of the last example can be generalized as follows.

Theorem 16A.3. Let m,n ≥ 2 be integers. Then Zn × Zm is cyclic if and

only if n and m are coprime. More generally, given any integers n1, . . . , nk

with ni ≥ 2, the group Zn1 × . . .× Znk
is cyclic if and only if n1, . . . , nk are

pairwise coprime.

The proof of this theorem is left as an exercise in Homework#8.

The following result is a direct consequence of Theorem 16A.3 and The-

orem 15.2:

Corollary 16A.4. Let n ≥ 2 be an integer, and write n = pa11 . . . pakk where

p1, . . . , pk are distinct primes. Then

Zn
∼= Zp

a1
1
× . . .× Zp

ak
k
.
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We can now state a stronger form of the classification theorem.

Theorem 16A.5 (Fundamental Theorem of Finite Abelian Groups, prime

factors form). Let G be a finite abelian group with |G| ≥ 2. Then there exist

primes p1, . . . , pk (NOT necessarily distinct) and a1, . . . , ak ∈ N such that

G ∼= Zp
a1
1
× . . .× Zp

ak
k
.

Moreover, the sequence of prime powers pa11 , . . . , pakk appearing in the above

factorization is uniquely determined by G up to permutation.

The first (existence) part of Theorem 16A.5 is a consequence of Corol-

lary 16A.4, Theorem 16A.2 and Lemma 16A.1. The moreover (uniqueness)

part requires quite a bit of additional work which we will not discuss.

Theorem 16A.5 can be used to classify all finite abelian groups of any

given order up to isomorphism. By classifying up to isomorphism we mean

that given any n ∈ N, we can write down a finite list of abelian groups of

order n such that any two groups in the list are not isomorphic to each other

and any abelian group of order n is isomorphic to some group on the list.

Example 3. Classify all abelian groups of order 48.

By Theorem 16A.5 the classification problem reduces to finding all ways

to write 48 as a product of prime powers (where each prime power is assumed

to be greater than 1 and the order in which prime powers appear does not

matter). We have 48 = 24 · 31. There is no way to split 31, but 24 can be

written as a product of powers of 2 in five different ways: 24 = 16, 23 · 2 =

8 · 2, 22 · 22 = 4 · 4, 22 · 2 · 2 = 4 · 2 · 2, 2 · 2 · 2 · 2. The corresponding

factorizations of 48 are 16 · 3, 8 · 2 · 3, 4 · 4 · 3, 4 · 2 · 2 · 3 and 2 · 2 · 2 · 2 · 3.

Thus, there are five abelian groups of order 48 up to isomorphism, namely

Z16 × Z3, Z8 × Z2 × Z3, Z4 × Z4 × Z3, Z4 × Z2 × Z2 × Z3 and

Z2 × Z2 × Z2 × Z2 × Z3.

If we analyze where the number 5 came from in the above computation,

we will see that it was completely determined by the exponents in the prime

factorization of 48 (namely, 4 and 1) and not by the primes themselves. In

general, the number of pairwise non-isomorphic abelian groups of order n

can be expressed using the partition function.

Definition. Let n ∈ N. A partition of n is a way to write n as a sum of

positive integers where the order of summands does not matter. The number

of distinct partitions of n is denoted by p(n), and the function p is called

the partition function.
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For instance, p(1) = 1 (there is no way to split 1), p(2) = 2 (partitions of

2 are 2 itself and 1 + 1), p(3) = 3 (partitions of 3 are 3, 2 + 1 and 1 + 1 + 1)

and p(4) = 5 (partitions of 4 are 4, 3 + 1, 2 + 2, 2 + 1 + 1 and 1 + 1 + 1 + 1).

Based on this pattern, one may guess that the sequence p(2), p(3), p(4), . . .

is simply the sequence of all primes; however, this analogy only lasts up to

p(6) = 11; the next value p(7) is 15, not 13.

Theorem 16A.6. Let n ≥ 2 be an integer, and write n = pa11 . . . pakk where

p1, . . . , pk are distinct primes. Then the number of abelian groups of order

n (up to isomorphism) is equal to
k∏

i=1
p(ai) = p(a1) . . . p(ak) where p is the

partition function.

For instance, if n = 48 = 24 · 31, we have k = 2, a1 = 4 and a2 = 1, so the

number of groups of order 48 (up to isomorphism) is p(4)p(1) = 5 · 1 = 5,

which is consistent with the result of Example 3.

Proof. If we want to count the number of ways to write n = pa11 . . . pakk as

a product of prime powers, we need to count the number of ways to split

each of the powers paii and then take the product of the obtained numbers.

Writing paii as a product of prime powers is equivalent to writing ai as a sum

of positive integers. Thus, the number of ways to write paii as a product of

prime powers is p(ai), and the result follows. �


