16. Homomorphisms

16.1. Basic properties and some examples.

Definition. Let G and H be groups. A map $\varphi: G \to H$ is called a homomorphism if

$$\varphi(xy) = \varphi(x)\varphi(y)$$
 for all $x, y \in G$.

Example 1. Let $G = (\mathbb{Z}, +)$ and $H = (\mathbb{Z}_n, +)$ for some n > 1. Define $\varphi : G \to H$ by $\varphi(x) = [x]$. Then φ is a homomorphism.

Since operation in both groups is addition, the equation that we need to check in this case is $\varphi(x+y) = \varphi(x) + \varphi(y)$. Verification is given below:

$$\varphi(x) + \varphi(y) = [x] + [y] = [x+y] = \varphi(x+y)$$

(where equality [x] + [y] = [x + y] holds by definition of addition in \mathbb{Z}_n).

Example 2. Let F be a field, n > 1 and integer, $G = GL_n(F)$ and $H = (F \setminus \{0\}, \cdot)$. Define the map $\varphi(A) = \det(A)$.

In this example φ is a homomorphism thanks to the formula $\det(AB) = \det(A) \det(B)$. Note that while this formula holds for all matrices (not necessarily invertible ones), in the example we have to restrict ourselves to invertible matrices since the set $Mat_n(F)$ of all $n \times n$ matrices over F does not form a group with respect to multiplication.

Example 3. Unlike the situation with isomorphisms, for any two groups G and H there exists a homomorphism $\varphi: G \to H$, called the trivial homomorphism. It is given by $\varphi(x) = e_H$ for all $x \in G$ (where e_H is the identity element of H).

The following theorem shows that in addition to preserving group operation, homomorphisms must also preserve identity element and inversion.

Theorem 16.1. Let G and H be groups and $\varphi: G \to H$ a homomorphism. Then

- (a) $\varphi(e_G) = e_H$ where e_G is the identity element of G and e_H is the identity element of H.
- (b) $(\varphi(x))^{-1} = \varphi(x^{-1})$ for all $x \in G$.

Proof. (a) Since $e_G = e_G \cdot e_G$, we have $\varphi(e_G) = \varphi(e_G \cdot e_G) = \varphi(e_G) \cdot \varphi(e_G)$. Multiplying both sides by $\varphi(e_G)^{-1}$ on the left (or on the right), we get $e_H = \varphi(e_G)$. (b) We need to prove that $\varphi(x^{-1})$ is the inverse of $\varphi(x)$ in H. By Theorem 11.1(d) it suffices to show that $\varphi(x^{-1}) \cdot \varphi(x) = e_H$ which follows from the result of (a): $\varphi(x^{-1}) \cdot \varphi(x) = \varphi(x^{-1}x) = \varphi(e_G) = e_H$ where the last equality holds by (a).

Next we introduce two fundamental subgroups which can be associated to every homomorphism.

So let G and H be groups and $\varphi: G \to H$ a homomorphism. The first subgroup associated to φ is the range (image) of φ :

$$Range(\varphi) = \varphi(G) = \{ h \in H : h = \varphi(g) \text{ for some } g \in G. \}$$

From the definition it is clear that $\varphi(G)$ is a subset of H, but below we will show that it is actually a subgroup.

The second subgroup if the kernel of φ , which is defined to be the set of all elements of G which get mapped to the identity element of H by φ :

$$\operatorname{Ker}(\varphi) = \{ g \in G : \varphi(g) = e_H \}.$$

Theorem 16.2. Let G and H be groups and $\varphi: G \to H$ a homomorphism. Then

- (a) $\varphi(G)$ is a subgroup of H
- (b) $\operatorname{Ker}(\varphi)$ is a subgroup of G

Proof. (a) First note that by Theorem 16.1(a) we have $e_H = \varphi(e_G)$, so $e_H \in \varphi(G)$.

Next we check that $\varphi(G)$ is closed under group operation: take any $u, v \in \varphi(G)$. By definition of $\varphi(G)$ there exist $x, y \in G$ such that $u = \varphi(x)$ and $v = \varphi(y)$. Hence $uv = \varphi(x)\varphi(y) = \varphi(xy) \in \varphi(G)$.

Finally, we check that $\varphi(G)$ is closed under inversion: take any $u \in \varphi(G)$. Then $u = \varphi(x)$ for some $x \in G$, so $u^{-1} = (\varphi(x))^{-1} = \varphi(x^{-1}) \in \varphi(G)$ where the second equality holds by Theorem 16.1(b).

(b) The proof for the kernel is rather similar. Again Theorem 16.1(a) implies that $e_G \in \text{Ker}(\varphi)$.

Next take any $x, y \in \text{Ker}(\varphi)$. Then $\varphi(x) = \varphi(y) = e_H$, so $\varphi(xy) = \varphi(x)\varphi(y) = e_H \cdot e_H = e_H$, so $xy \in \text{Ker}(\varphi)$ as well. Thus, $\text{Ker}(\varphi)$ is closed under group operation.

(c) Finally, for any $x \in \text{Ker } \varphi$ we have $\varphi(x) = e_H$, so by Theorem 16.1(b) we have $\varphi(x^{-1}) = (\varphi(x))^{-1} = e_H^{-1} = e_H$, so $x^{-1} \in \text{Ker } (\varphi)$. Hence $\text{Ker } (\varphi)$ is closed under inversion.

Example 4. Let $G = H = (\mathbb{Z}_{10}, +)$, and define $\varphi : G \to H$ by $\varphi([x]) = 2[x] = [2x]$ for all $x \in \mathbb{Z}$.

It is straightforward to check that φ is a homomorphism. The range of φ is $\varphi(G) = \{h \in H : h = [2x] \text{ for some } x \in \mathbb{Z}.\} = \{[0], [2], [4], [6], [8]\} = \langle [2] \rangle$. The kernel of φ is $\{[x] \in G : [2x] = e_H\} = \{[x] \in G : [2x] = [0]\}$. Since $[2x] = [0] \iff 2x = 10k$ for some $k \in \mathbb{Z} \iff x = 5k$ for some $k \in \mathbb{Z}$. Thus, $\operatorname{Ker}(\varphi) = \{[5k] : k \in \mathbb{Z}\} = \langle [5] \rangle = \{[0], [5]\}$.

The following theorem shows that one can check whether a homomorphism is injective simply by computing its kernel.

Theorem 16.3. Let G and H be groups and $\varphi: G \to H$ a homomorphism. Then φ is injective if and only if $\operatorname{Ker}(\varphi) = \{e_G\}$

Proof. " \Rightarrow " Suppose φ is injective. We know that $\varphi(e_G) = e_H$, so Ker (φ) contains e_G , and if Ker (φ) contained another element besides e_G , then φ would not be injective. Thus, Ker $(\varphi) = \{e_G\}$.

" \Leftarrow " We argue by contrapositive (if φ is not injective, then $\operatorname{Ker}(\varphi) \neq \{e_G\}$). Suppose φ is not injective, so there exist $x \neq y$ in G with $\varphi(x) = \varphi(y)$. Then $\varphi(xy^{-1}) = \varphi(x)\varphi(y^{-1}) = \varphi(x)\varphi(y)^{-1} = e_H$, so xy^{-1} is an element of $\operatorname{Ker}(\varphi)$ different from e_G .

16.2. Some analogies with linear algebra and Range-Kernel Theorem. The notions of group, homomorphism, range and kernel have direct analogues in linear algebra:

group theory	linear algebra
group	vector space
homomorphism	linear transformation
range of a homomorphism	range of a linear transformation
kernel of a homomorphism	nullspace of a linear transformation

One of the fundamental results in linear algebra is the rank-nullity theorem which asserts the following:

Rank-Nullity Theorem. Let F be a field, let V and W be finite-dimensional vector spaces over F, and let $T: V \to W$ be a linear transformation. Then

$$\dim(\varphi(T)) + \dim(Nullspace(T)) = \dim(V)$$

(The number $\dim(\varphi(T))$ is called the rank of T and the number $\dim(Nullspace(T))$ is called the nullity of T, so the theorem says that the sum of the rank of T and the nullity of T is equal to the dimension of the vector space on which T is defined).

The following theorem, which we call the Range-Kernel Theorem, is a group-theoretic analogue of rank-nullity theorem.

Theorem 16.4 (Range-Kernel Theorem). Let G and H be finite groups and $\varphi: G \to H$ a homomorphism. Then

$$|\varphi(G)| \cdot |\operatorname{Ker}(\varphi)| = |G|.$$

In Example 4 we have |G| = 10, $|\varphi(G)| = 5$ and $|\operatorname{Ker}(\varphi)| = 2$.

We finish this lecture with an example showing how the Range-Kernel Theorem can be used to compute the order of some group.

Problem 16.5. Let p be a prime. Compute the order of the group $|SL_2(\mathbb{Z}_p)|$.

We will solve this problem in two steps. First we will compute $|GL_2(\mathbb{Z}_p)|$ and then use the Range-Kernel Theorem to compute $|SL_2(\mathbb{Z}_p)|$.

Step 1: By definition $GL_2(\mathbb{Z}_p) = \{A \in Mat_2(\mathbb{Z}_p) : \det(A) \neq [0]\}.$

By a theorem from linear algebra, $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \neq [0] \iff$ the vectors (a,b) and (c,d) are not proportional (that is, are not multiples of each other). Using this observation, we can count the number of ways to choose a 2×2 invertible matrix with entries in \mathbb{Z}_p .

The first row of a matrix in $GL_2(\mathbb{Z}_p)$ can be any vector of length 2 except ([0], [0]), so there are p^2-1 choices for the first row. Once the first row (a,b) is chosen, the second row can be any vector which is not a scalar multiple of (a,b). Since any nonzero vector with entries in \mathbb{Z}_p has precisely p distinct multiples, there are p^2-p choices for the second row. Overall we have $(p^2-1)(p^2-p)$ choices, so $|GL_2(\mathbb{Z}_p)|=(p^2-1)(p^2-p)=(p-1)^2p(p+1)$. Step 2: By Example 2, the map $\varphi:GL_2(\mathbb{Z}_p)\to\mathbb{Z}_p\setminus\{[0]\}$ given by $\varphi(A)=\det(A)$, is a homomorphism.

The range of φ is the entire group $\mathbb{Z}_p \setminus \{[0]\}$ since every nonzero $a \in \mathbb{Z}_p$ is the determinant of some 2×2 matrix: $a = \det \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$. The kernel of φ is the set $\{A \in GL_2(\mathbb{Z}_p) : \det(A) = [1]\}$ which is precisely $SL_2(\mathbb{Z}_p)$. Therefore, by the Range-Kernel Theorem we have

$$|SL_2(\mathbb{Z}_p)| = |\text{Ker }(\varphi)| = \frac{|G|}{|\varphi(G)|}$$

= $\frac{|GL_2(\mathbb{Z}_p)|}{|\mathbb{Z}_p \setminus \{[0]\}|} = \frac{(p-1)^2 p(p+1)}{p-1} = (p-1)p(p+1).$

16.3. **Book references.** The general references for this lecture are [Pinter, Chapter 14] and [Gilbert, 3.6].