
10. Groups

Definition. A group is a set G with binary operation ∗ satisfying the fol-

lowing axioms:

(G0) G is closed under ∗, that is, (x ∈ G, y ∈ G⇒ x ∗ y ∈ G)

(G1) ∗ is associative, that is, x ∗ (y ∗ z) = (x ∗ y) ∗ z for all x, y, z ∈ G

(G2) (existence of identity element): there exists e ∈ G, called identity

element such that x ∗ e = e ∗ x = x for all x ∈ G.

(G3) (existence of inverses): for every x ∈ G there exists y ∈ G, called

inverse of x, such that x ∗ y = y ∗ x = e. We will usually denote the

inverse of x by x−1, but there are some important exceptions where

such notation could be confusing (see Example 1 below).

Remark:

(1) Technically, the axiom (G0) does not have to be mentioned explicitly,

as it is implied by the assumption that ∗ is a binary operation on

G. However, it is useful to keep it in the list, as it is one of the

properties (in some cases the only non-trivial property) that needs

to be verified when we are trying to show that something is a group.

(2) The axioms of a group do not explicitly require that the identity

element e is unique or that every x has unique inverse. However, it

turns out that the uniqueness statement is true in both cases and

will be proved in the next lecture (as a consequence of the axioms).

(3) The group operation ∗ is not required to be commutative, so it is

perfectly fine to have x ∗ y 6= y ∗x for some x, y ∈ G. However, some

pairs of elements of G will always commute; for instance x∗e = e∗x
for every x ∈ G by (G2).

10.1. Examples (and some non-examples) of groups.

Example 1. Let R be any ring (not necessarily commutative). Then (R,+)

is a group, that is, if we let G = R and define the operation ∗ on G by

x ∗ y = x + y for all x, y ∈ G, then G is a group with respect to this

operation.

Let us verify the axioms. In this case we do not need to do any calcu-

lations, but simply refer to the suitable axioms of a ring. Indeed, (G0) is

precisely the axiom (A0) of a ring (which says that R must be closed under

+).
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(G1) is precisely ring axiom (A2)

(G2) holds if we set e = 0. Indeed, x ∗ e = x + 0 = x = 0 + x = e ∗ x for

all x ∈ R by the ring axiom (A3)

Finally, (G3) holds if we set y = −x, the additive inverse. Indeed, x +

(−x) = (−x) + x = 0 by the ring axiom (A4).

Remark:

(1) In Example 1 we do NOT want to denote the group inverse −x by

x−1 since x−1 already has a different meaning, namely the (multi-

plicative) inverse of x in the ring R (which may or may not exist,

depending on x). Thus, if we use the notation x−1 for the inverse in

the group, it will not be clear which inverse we are talking about.

(2) Since addition is commutative by axiom (A1), in Example 1 we do

have property x ∗ y = x ∗ x for all x, y ∈ G (which, as we already

emphasized, does not have to hold in groups in general). Groups

satisfying this additional property are called abelian (or commuta-

tive).

(3) Example 1 is really not a single example, but a whole family of

examples. As special cases, we obtain the following examples of

groups: (Z,+) (integers with addition), (Q,+), (R,+), (Zn,+) for

every n ∈ N, (2Z,+).

Example 2. Let F be any field. Then (F \ {0}, ·) is a group, that is,

G = F \ {0} (the set of all nonzero elements of F ) is a group with respect

to multiplication (∗ = ·).

Verification of axioms in this example is similar to Example 1, but a bit

more subtle. Let us start with (G0). Note that (M0) states that F is closed

with respect to multiplication, but this is not enough for (G0) – we need to

check that if x ∈ F \{0} and y ∈ F \{0}, then xy ∈ F \{0} or, equivalently,

(x, y ∈ F, x 6= 0, y 6= 0⇒ xy 6= 0). We know that the latter property is true

by a Homework#1 problem, so (G0) is satisfied.

(G1) is precisely the field axiom (M1)

(G2) holds if we set e = 1 – this holds by the field axiom (M3)

Finally, (G3) holds if we set y = x−1 (the multiplicative inverse of x) – this

follows primarily from the field axiom (M4), but (similarly to verification of

(G0) above) there is an additional thing to check. Indeed, (M4) says that

for every x ∈ F \ {0} there exists y ∈ F such that xy = yx = 1. To deduce

(G3) we need to check that this y is nonzero (to make sure y is also an

element of G = F \{0}). But this is easy to prove by contradiction: if y = 0
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and xy = xy = 1, then by Lecture 1 we have 0 = x · 0 = 1, contrary to the

axiom 0 6= 1.

Example 3. (generalization of Example 2). Let R be a ring with 1, and let

R× denote the set of invertible elements of R. Then (R×, ·) is a group.

Verification of axioms in this example is similar to Example 2. The only

difference is that we have to explicitly check axiom (G0) instead of referring

to a previously established property. In this case (G0) asserts that the

product of two invertible elements of R is itself an invertible element of R.

Verification of this property will be included in Homework#5.

Note that Example 3 is indeed a special case of Example 2 since if R is a

field, then R× = R \ {0} by field axiom (M4).

We proceed with two non-examples of groups.

Example 4. Let O denote the set of all ODD integers. Then (O,+) is not

a group.

Already the first axiom (G0) fails here: since the sum of two odd integers

is even, O is not closed under addition. It is also easy to check that (G2)

fails (and (G3) does not even make sense without (G2)); however, we do not

have mention this explicitly. To prove that something is not a group we just

need to exhibit one axiom which does not hold.

Example 5. Again let O be the set of all odd integers. Then (O, ·) is not a

group.

In this example it is easy to see that (G0), (G1) and (G2) hold, with e = 1

in (G2). However, (G3) does not hold – for instance there is no y ∈ O such

that 3y = 1.

Example 6. (symmetric groups) Let A be any set and let G be the set of

all bijective functions f : A → A. Given f, g ∈ G, define f ∗ g = f ◦ g, the

composition of f and g, that is, (f ∗ g)(a) = f(g(a)) for all a ∈ A. Then

(G, ∗) is a group. This group is usually denoted by Sym(A) and called the

symmetric group on A.

Verification of axioms in this example boils down to basic properties of

composition of functions and will be omitted. We will just state what is the

identity element in this group and what are the inverses.

Clearly, (G2) holds if we set e = id, the identity function, defined by

id(a) = a for all a ∈ A (the function which sends every element of A to

itself). The inverse of f ∈ G is the inverse function f−1 (in the usual sense).

Note that f−1 : A→ A exists precisely because f is bijective.
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Example 7. (octic group) Let S denote a square centered at (0, 0) with sides

parallel to coordinate axes. Let G denotes the set of all isometries of S, that

is, the set of all bijective functions from S to S which preserve distances

between points. A theorem from geometry asserts that G has 8 elements:

G = {r0, r1, r2, r3, s1, s2, s3, s4}

where rk is the counterclockwise rotation by 90k degrees for k = 0, 1, 2, 3,

and s1, s2, s3 and s4 are reflections with respect to the lines y = 0, y = x,

x = 0 and y = −x, respectively.

Then G is a group with respect to composition. In the sequel this group

will be denoted by D8 and called the dihedral group of order 8 (later we will

consider the groups D2n for every integer n ≥ 3).

As in Example 6 we will skip verification of axioms and state what is the

identity in G and compute the inverses. Clearly, r0 is the identity element of

G, and inverses are as follows: r−1
1 = r3, r

−1
3 = r1, and every other element

of G is its own inverse: x−1 = x for all x 6= r1, r3.

Example 8. (general linear group) Let F be a field, let n ≥ 2 be an integer,

and let GLn(F ) be the set of all invertible n×n matrices with entries in F ,

that is,

GLn(F ) = {A ∈Matn(F ) : there exists B ∈Matn(F ) s.t. AB = BA = I}

where I is the identity matrix. Then GLn(F ) is a group with respect to

matrix multiplication.

There are two different ways to check that GLn(F ) is group.

The first way, which is shorter but more abstract, is to observe that the

set Matn(F ) of all n × n matrices over F is a ring (with respect to matrix

addition and multiplication) and by definition GLn(F ) = (Matn(F ))×, the

set of invertible elements of Matn(F ). Hence by the result of Example 3,

GLn(F ) is a group with respect to matrix multiplication.

The identity element of GLn(F ) is the identity matrix I, and the inverse

of A ∈ GLn(F ) is the inverse matrix in the usual sense.

The second argument is more explicit and uses the following fact from

linear algebra: a matrix A ∈Matn(F ) is invertible if and only if det(A) 6= 0.

Thus, GLn(F ) = {A ∈ Matn(F ) : det(A) 6= 0}. Using this alternative

description, one can now verify group axioms similarly to Example 3. In

order to check (G0) with this approach we need to use the following basic

property of determinants: that det(AB) = det(A) · det(B).
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10.2. Book references. The general references for this lecture are [Pinter,

Ch. 3 and 7] and [Gilbert, 3.1]. Note that the groups discussed in detail

in Chapter 3 of Pinter are the groups (Zn,+) (of course, he cannot use

this terminology or notations since rings do not appear until much later

in the book). The symmetric groups and the octic group (which is one of

the groups in the family of dihedral groups) are introduced in Chapter 7

of Pinter. Note that Chapter 7 contains a detailed discussion on how to

perform computations in those groups – make sure to read it.


