Homework #9. Due on Thursday, April 7th Reading:

1. For this assignment: Lectures 17-18 (for Lecture 18 look at both class notes and online version), [Pinter, §8,13], [Gilbert, §4.1]

- 2. For Tuesday's class: online lecture 19, [Pinter, §13] and [Gilbert, §4.4]
- 3. For Thursday's class: online lecture 20, [Pinter, §14] and [Gilbert, §4.5]

Problems:

Problem 1: (a) Let $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \ 5 & 1 & 3 & 7 & 2 & 6 & 4 \end{pmatrix}$ in two-line notation. Write f as in disjoint cycle form.

(b) Write the following element of S_9 as a product of disjoint cycles:

$$
(1, 2, 4, 6, 7)(3, 4, 5, 1, 8)(9, 2, 3, 5)
$$

Problem 2: List all elements of S_3 in disjoint cycle form and compute the multiplication table of S_3 .

Problem 3: Two elements f and g of S_n are said to have the same cycle type if their disjoint cycle forms contain the same number of cycles of each length. For instance, elements $(1, 5, 6)(2, 3)(4, 7)$ and $(1, 7, 8)(4, 5)(3, 6)$ of S_8 have the same cycle type. Show that elements of S_6 have 11 distinct cycle types. For each cycle type list one element of that type.

Problem 4: (a) Use the result of Problem 3 to determine possible orders of elements of S_6 . Recall that if $f \in S_n$ is written as a product of disjoint cycles $f_1f_2 \ldots f_r$ where f_1 has length k_1, \ldots, f_r has length k_r , then the order of f is the least common multiple of k_1, k_2, \ldots, k_r .

(b) Find the smallest $n \in \mathbb{N}$ for which S_n has an element of order 15 and prove your answer.

Problem 5: (a) Let $f, g \in S_n$ be two transpositions, that is, $f = (i, j)$ and $g = (k, l)$ for some i, j, k, l . What are the possible orders of the product fg ? Note: By definition, a transposition is just a cycle of length 2. Hint: Consider three cases depending on the size of the set $\{i, j\} \cap \{k, l\}$ (note that $\{i, j\} \cap \{k, l\}$ is empty if and only f and g are disjoint cycles).

(b) (optional) Answer the same question when f is a transposition and g is a cycle of length 3.

Problem 6: Let G and H be finite groups such that $|G|$ and $|H|$ are coprime. Prove that any homomorphism $\varphi : G \to H$ must be trivial, that is, $\varphi(x) = e_H$ for all $x \in G$ where e_H is the identity element of H. **Hint:** Use the Range-Kernel theorem (see Lecture 16) and Lagrange theorem (applied to a suitable subgroup).

Problem 7: Let p and q be distinct primes, and let G be a group of order pq. Prove that one of the following two cases occurs:

(i) G is isomorphic to \mathbb{Z}_{pq} .

(ii) for every $x \in G$ either $x^p = e$ or $x^q = e$.

Problem 8: Use Lagrange theorem to prove Fermat's little theorem: if p is prime, then $n^p \equiv n \mod p$ for any $n \in \mathbb{Z}$. **Hint:** Apply Corollary 18.1(B) to the group $\mathbb{Z}_p^{\times} = (\mathbb{Z}_p \setminus \{[0]\}, \cdot).$

Problem 9: Let G be a finite group of order n, and let φ : $G \to S_n$ be an injective homomorphism from the proof of Cayley's theorem:

- (a) Describe φ explicitly (by computing $\varphi(g)$ for every $g \in G$) for each of the following groups: $G = \mathbb{Z}_4$, $G = S_3$ (in Lecture 18 we did the corresponding computation for $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- (b) (bonus) Prove that the following property holds for every group: if $g \in G$ and $m = o(g)$, then $\varphi(g)$ is a product of $\frac{n}{m}$ disjoint cycles of length m.
- (c) (bonus) There are several different ways to "justify" the terminology "cyclic group". Use the result of (b) to give one possible explanation of why cyclic groups are called cyclic.