Homework #8. Due Thursday, March 31st Reading:

1. For this assignment: Online lectures 15 and 16, class notes from 3/24, [Pinter, §9, 14] and [Gilbert, §3.5, 3.6].

- 2. For next Tuesday's class: online lecture 17, [Pinter, §8], [Gilbert, §4.1]
- 3. For next Thursday's class: online lecture 18, [Pinter, §13]

Problems:

Problem 1:

- (a) Let G be an abelian group and let m be an integer. Prove that the map $\varphi: G \to G$ given by $\varphi(x) = x^m$ is a homomorphism.
- (b) Now use (a) and a theorem from class to solve Problem 8(a) in HW#6 without doing any computations.

Problem 2: Let G and H be groups and φ : $G \to H$ a homomorphism. For each of the following statements, determine whether it is true (in general) or false (in at least one case). If the statement is true, prove it; if it is false, give a specific counterexample.

- (a) If H is abelian, then G is abelian
- (b) If G is abelian, then H is abelian
- (c) If G is abelian, then $\varphi(G)$ is abelian
- (d) If G is abelian, then Ker (φ) is abelian

Problem 3: Let $G = (\mathbb{Z}_{12}, +)$. Define the map $\varphi : G \to G$ by $\varphi([x]) =$ $3[x] = [3x]$. Prove that φ is a homomorphism and compute its range and kernel. This problem is a warm-up for Problem 4.

Optional problem I: Let A and B be finite sets of the same cardinality, that is, $|A| = |B| = n < \infty$. Let $f : A \to B$ be a function. Prove that f is injective if and only if f is surjective.

Problem 4: Fix integers $n > 1$ and $m \geq 1$, and let $G = (\mathbb{Z}_n, +)$. Define the mapping $\varphi_m : G \to G$ by

$$
\varphi_m([x]) = m[x] = [mx] \text{ for every } [x] \in \mathbb{Z}_n.
$$

- (a) Prove that $\varphi_m : G \to G$ is always a homomorphism. **Hint:** you already proved it in this homework.
- (b) Prove that $\varphi_m(G)$ is equal to $\langle [m]\rangle$, the cyclic subgroup generated by $[m]$.
- (c) Prove that φ_m is an isomorphism if and only if $gcd(m, n) = 1$. **Hint:** By part (a), the question is reduced to checking whether φ_m is bijective. By Optional Problem I it suffices to know when φ_m is surjective.

To determine when φ_m is surjective, use (b) and one of the parts of Theorem 14.1.

(d) Now let ψ be an arbitrary **automorphism** of G, that is, ψ is an isomorphism from G to G. Prove that $\psi = \varphi_m$ for some m, with $gcd(m, n) = 1$. Hint: Let $m \in \mathbb{Z}$ be such that $\psi([1]) = [m]$. Use the fact that ψ preserves group operation (addition in this case) to show that $\psi([x]) = \varphi_m([x])$ for any $x \in \mathbb{Z}$.

Problem 5: (practice) Let $m, n > 1$ be positive integer. For each integer x we denote by $[x]_n \in \mathbb{Z}_n$ the congruence class of x in \mathbb{Z}_n and by $[x]_m \in \mathbb{Z}_m$ the congruence class of x in \mathbb{Z}_m . Now try to define a map $\varphi : \mathbb{Z}_n \to \mathbb{Z}_m$ by

$$
\varphi([x]_n) = [x]_m.
$$

- (a) Prove that φ is a homomorphism whenever it is well defined.
- (b) Now prove that φ is well defined $\iff m \mid n$. **Hint:** By definition, φ is well defined if and only if the following implication holds for all $x, y \in \mathbb{Z}$:

if
$$
[x]_n = [y]_n
$$
, then $[x]_m = [y]_m$.
$$
(***)
$$

Thus, to prove (b) you need to show the following:

(i) If $m \mid n$, then $(***)$ holds for all $x, y \in \mathbb{Z}$

(ii) If $m \nmid n$, then there exist $x, y \in \mathbb{Z}$ for which (***) does not hold.

(c) Find an injective homomorphism $\varphi : \mathbb{Z}_5 \to \mathbb{Z}_{10}$ (note that φ from (b) would not work as it will not be well defined).

Problem 6:

- (a) Let n_1, \ldots, n_k be integers with $n_i \geq 2$ for all i, let $l = LCM(n_1, \ldots, n_k)$ and let $G = \mathbb{Z}_{n_1} \times \ldots \times \mathbb{Z}_{n_k}$. As in class, we are using additive notation in G. Prove that $lg = 0$ for all $g \in G$ (so that the order of every element of G divides l) and that there exists $g \in G$ with $o(g) = l$ (you can find an explicit g with this property).
- (b) Deduce from (a) that G is cyclic if and only if the integers n_1, \ldots, n_k are pairwise coprime. (In Lecture on 3/24 we stated a special case of this result for $k = 2$).

Problem 7: Let $G = \mathbb{Z}_{24}^{\times}$.

- (a) Compute the order of every element of G.
- (b) Use your answer in (a), fundamental theorem of finite abelian groups and Problem 6 to prove that $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Problem 8: Describe all abelian groups of order 72 up to isomorphism.

Bonus problem:

(a) Let G be a group and let Aut (G) be the set of all automorphisms of G (= isomorphisms from G to G). Prove that elements of Aut (G)

form a group with respect to composition. This group is called the automorphism group of G. Hint: This follows from Problem 5 of HW#7. What is the identity element of Aut (G) ?

(b) Let $G = \mathbb{Z}_n$ (with addition). Use the result of Problem 4 to prove that Aut (G) is isomorphic to \mathbb{Z}_n^{\times} (with multiplication). **Hint:** This problem is much easier than it seems. Elements of $\mathrm{Aut}\,(G)$ are explicitly described in Problem 4. Use it to find a natural bijective mapping between Aut (G) and \mathbb{Z}_n^{\times} ; then show that your mapping is in fact an isomorphism.