
Homework #2. Due on Thursday, February 4th, in class

Reading:

1. For this assignment: Online lectures 2 (ordered rings part) and 3 and

[Gilbert, §2.1,2.2].

2. For next week’s classes: Online lectures 4 and 5, [Gilbert, §2.3,2.4] and

[Pinter, §22]

Problems:

Problem 1: Prove by induction that the following equalities hold for any

n ∈ N:

(a) 12 + 22 + . . . + n2 = n(n+1)(2n+1)
6

(b) a + ar + ar2 + . . . + arn−1 = a1−rn

1−r where a, r ∈ R and r 6= 1

Problem 2: Consider the following “proof” by induction: For each n ∈ N
let P (n) be the statement

n∑
i=0

2i = 2n+1. (∗ ∗ ∗)

Claim: P (n) is true for all n ∈ N.

Proof: “P (n− 1)⇒ P (n).” Assume that P (n− 1) is true for some n ∈ N.

Then
∑n−1

i=0 2i = 2n. Adding 2n to both sides, we get
∑n−1

i=0 2i +2n = 2n +2n,

whence
∑n

i=02
i = 2n+1, which is precisely P (n). Thus, P (n) is true.

By the principle of mathematical induction, P (n) is true for all n. �

(a) Show that the statement P (n) is false (it is actually false for any n).

(b) Explain why the above “proof” does not contradict the principle of

mathematical induction, that is, find a mistake in the above “proof”

(Hint: the mistake is in the general logic).

Problem 3: In online lecture 3 it is proved that for every n ∈ N there exist

an, bn ∈ Z such that (1 +
√

2)n = an + bn
√

2. Moreover, it is shown that

such an and bn satisfy the following recursive relations: a1 = b1 = 1 and

an+1 = an + 2bn, bn+1 = an + bn for all n ∈ N.

(a) Use the above recursive formulas and mathematical induction to

prove that a2n − 2b2n = (−1)n for all n ∈ N.

(b) Prove that for all n ∈ N there exist cn, dn ∈ Z such that (1+
√

3)n =

cn + dn
√

3.

(c) (bonus) Find a simple formula relating cn and dn (similar to the one

in (a)) and prove it.
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Problem 4: Given n, k ∈ Z with 0 ≤ k ≤ n, define the binomial coefficient(
n
k

)
by (

n

k

)
=

n!

k!(n− k)!

(recall that 0! = 1).

(a) Prove that
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
for any 1 ≤ k < n (direct computa-

tion).

(b) Now prove the binomial theorem: for every a, b ∈ R and n ∈ N,

(a+b)n =
n∑

k=0

(
n

k

)
an−kbk =

(
n

0

)
an+

(
n

1

)
an−1b+. . .+

(
n

n− 1

)
abn−1+

(
n

n

)
bn.

Hint: Use induction on n. For the induction step write

(a + b)n+1 = (a + b)n · (a + b) and use part (a).

Note: In Problems 5(a) and 6(a) below you are allowed to make an extra

assumption that R is a commutative ring with 1 (this does not make the

proof considerably easier, but makes it possible to quote several previously

established results).

Problem 5:

(a) Let R be an ordered ring. Prove that x2 > 0 for every nonzero

x ∈ R. Hint: Consider two cases.

(b) Use (a) to prove that C (complex numbers) is not an ordered ring

(no matter how we try to define the set of positive elements).

Problem 6:

(a) Let R be an ordered ring. Prove that if xy = 0 for some x, y ∈ R,

then x = 0 or y = 0. Hint: prove this by contrapositive.

(b) Let R be any ring which satisfies the conclusion of (a) (xy = 0

⇒ x = 0 or y = 0 for all x, y ∈ R). Prove that multiplicative

cancellation law holds in R, that is, if xz = yz for some x, y, z ∈ R,

then x = y or z = 0.

Problem 7: Let R be a finite ring (that is, a ring, with finitely many

elements), and suppose that |R| > 1. Prove that R cannot be an ordered

ring. There is a hint on the next page, but first try to solve it without

looking at the hint.
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Hint for 7: Assume by way of contradiction that R is ordered; since |R| > 1,

R must have at least one nonzero element, hence by axiom (O1) there must

be at least one x ∈ R such that x > 0. Now use Problem 3(a) from HW #1

repeatedly and transitivity of > to reach a contradiction.


