Homework #12. Not due

For this assignment: online notes (Lectures 24-26) and class notes (Lectures 24-25)

Problems:

Problem 1: Let $\mathbb{Z}[i]$ be the set of all complex numbers of the form a + bi with $a, b \in \mathbb{Z}$. Prove that $\mathbb{Z}[i]$ is a subring of \mathbb{C} . This ring is called **Gaussian integers.**

Problem 2: Let $S = \{a + b\sqrt{2} + c\sqrt{3} : a, b, c \in \mathbb{Z}\}.$

- (a) Let T be a subring of \mathbb{R} which contains 1 and $\sqrt{2}$ and $\sqrt{3}$. Prove that T contains all elements of S.
- (b) Prove that S is NOT a subring of \mathbb{R} .
- (c) Find the minimal subring of \mathbb{R} which contains all elements of S. First guess what the answer should be, call your answer S_1 (step 1), then prove that S_1 is a subring (step 2), and finally prove that S_1 is the minimal subring containg S (step 3).

Problem 3: Let R be a commutative ring with 1 and I an ideal of R.

- (a) Suppose that $1 \in I$. Prove that I = R.
- (b) Suppose that R is a field. Prove that I = R or $I = \{0\}$. Hint: Reduce (b) to (a).

Problem 4: Let $R = \mathbb{Z}[x]$ (polynomials with coefficients in \mathbb{Z}), and let

 $I = \{a_0 + a_1 x + \ldots + a_n x^n : \text{ each } a_i \in \mathbb{Z} \text{ and } a_0 \text{ is even. } \}$

- (a) Prove that I is an ideal of R.
- (b) Prove that I is a non-principal ideal, that is, $I \neq fR$ for any $f \in R$. **Hint:** Consider three cases.
 - (i) f is a non-constant polynomial
 - (ii) f is an even constant
 - (iii) f is an odd constant.

Problem 5: Use FTH for rings to prove that $\mathbb{R}[x]/(x^2+1)\mathbb{R}[x] \cong \mathbb{C}$ (make sure to read the entire online Lecture 26 before working on this problem).