
9. Congruence classes (continued)

Definition. Let R be a ring with 1. An element a ∈ R is called invertible

if there exists b ∈ R such that ab = ba = 1.

Theorem 9.1. Let n ≥ 2 be an integer. Then an element [a] ∈ Zn is

invertible ⇐⇒ a and n coprime.

Proof. See Theorem 2.31 in Section 2.6 of the book. �

Corollary 9.2. Let n ≥ 2 be an integer. Then Zn is a field ⇐⇒ n is

prime.

Proof. See Corollary 2.32 in Section 2.6 of the book. �

Example 1. Let n be a prime. Find all z ∈ Zn such that z2 = [1].

Solution 1: (working inside Zn) Suppose that z2 = [1]. Subtracting [1]

from both sides, we get z2 − [1] = [0]. Since [1] = [1]2, we get

(z − [1])(z + [1]) = [0]. (∗ ∗ ∗)

Since n is prime, Zn is a field. Hence by HW #1.2, we conclude from (***)

that z − [1] = 0 or z + [1] = 0. Thus, either z = [1] or z = −[1] = [−1] =

[n− 1].

So far we showed that equality z2 = [1] implies z = [1] or z = [n− 1], so

there are at most two solutions. To check that [1] and [n − 1] are indeed

solutions, we plug them into the original equation: [1]2 = [12] = [1] and

[n− 1]2 = [−1]2 = [(−1)2] = [1], so both 1 and [n− 1] are solutions.

Final answer: z = [1] or [n− 1].

Solution 2: (reducing to question about integers) We know that z = [x]

for some x ∈ Z. Thus our equation is [x]2 = [1] which can be rewritten as

[x2] = [1]. The latter means that x2 ≡ 1 mod n, that is, n | (x2 − 1).

Thus, n | (x− 1)(x + 1), and by Euclid’s lemma (recall that n is prime),

we have n | (x − 1) or n | (x + 1). Hence either x ≡ 1 mod n, in which

case [x] = [1], or x ≡ −1 mod n, in which case [x] = [−1] = [n− 1]. As in

Solution 1, we check that z = [1] and z = [n− 1] are solutions by plugging

them into the original equation.

Exercise 1. Show (by an explicit example) that if n is not prime, the equa-

tion z2 = [1] may have more than 2 solutions (this is true for some, but not

all non-prime n).
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We finished the lecture by discussing the connection between the ring Zn

introduced in Lecture 8 (referred below as “new” Zn) and the “hypothetical

ring Zn” discussed in Lecture 2 (referred below as “old” Zn). Recall that in

Lecture 2 we defined Zn to be the set of integers {0, 1, . . . , n− 1} and asked

the following question: can we define operations ⊕ and � on Zn such that

(i) Zn with these operations is a commutative ring with 1

(ii) x⊕ y = x+ y whenever 0 ≤ x+ y ≤ n− 1 and x� y = xy whenever

0 ≤ xy ≤ n − 1 (where the sum and the product on the right-hand

sides are the usual addition and multiplication)?

We can now answer this question in the affirmative: take the addition and

multiplication tables for the new Zn, remove all the brackets and relabel the

operations as ⊕ and �. Then it is easy to see (i) and (ii) will hold.

A natural question is whether there are explicit formulas for ⊕ and � on

the “old” Zn. The answer is yes, but we need an additional notation. Given

x ∈ Z, denote by x the remainder of dividing x by n (that is, x is the unique

integer between 0 and n− 1 such that x ≡ x mod n). Then the operations

⊕ and � on the “old” Zn are given by the formulas

x⊕ y = x + y and x� y = xy (∗ ∗ ∗)

One may wonder now why we had to define Zn in a fancy way as the set

of congruence classes mod n instead of presumably simpler old definition

Zn = {0, 1 . . . , n− 1} with operations defined by (***). The answer is that

if operations were defined by (***), it would have required much more work

to verify the ring axioms. In addition, the fact that in the new definition we

can consider [x] as an element of Zn for every x ∈ Z (not just x between 0

and n− 1) turns out to be extremely convenient.


