
6. Congruences

Definition. Fix an integer n ≥ 2. Given a, b ∈ Z, we say that a and b are

congruent mod n and write a ≡ b mod n if n | (b− a).

Note that

a ≡ b mod n ⇐⇒ n | (b− a) ⇐⇒ b = a + nk for some k ∈ Z.

We started by discussing basic properties of congruences. The proofs of

the following four theorems are given in Section 2.5 of the book. In all these

theorems n is a fixed integer ≥ 2.

Theorem 6.1 (Congruence is an equivalence relation). The following hold:

(i) x ≡ x mod n for all x ∈ Z
(ii) If x ≡ y mod n for some x, y ∈ Z, then y ≡ x mod n

(iii) If x ≡ y mod n and y ≡ z mod n for some x, y, z ∈ Z, then x ≡ z

mod n.

Theorem 6.2. Suppose x ≡ y mod n for some x, y ∈ Z. Then x+z ≡ y+z

mod n and xz ≡ yz mod n for all z ∈ Z

Theorem 6.3 (Congruences can be added or multiplied). Suppose x ≡ y

mod n and z ≡ w mod n for some x, y, z, w ∈ Z. Then x + z ≡ y + w

mod n and xz ≡ yw mod n.

Theorem 6.4 (Cancellation law). Suppose a and n are coprime and x, y ∈
Z. Then ax ≡ ay mod n ⇐⇒ x ≡ y mod n.

Note that cancellation law is not valid if a and n are not coprime. For

instance, 2 · 3 ≡ 2 · 0 mod 6 but 3 6≡ 0 mod 6.

We proceeded with solving two explicit congruences.

Example 1. Find all x ∈ Z such that 6x ≡ 30 mod 151.

This example can be solved directly by cancellation law since 30 = 6 · 5
and gcd(6, 151) = 1. The general solution is x = 5 + 151k with k ∈ Z.

Example 2. Find all x ∈ Z such that 6x ≡ 4 mod 151.

We solved this example using the Euclidean algorithm for representing

gcd(a, b) as an integer linear combination of a and b (see Example 2 on

page 104 of the book). The general solution here is x = −100 + 151k with

k ∈ Z.
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Theorem 6.5. Let a, b, n ∈ Z with n ≥ 2, and assume that a and n are

coprime. Then the congruence ax ≡ b mod n always has a solution, and

if x0 is a particular solution, then the general solution is x = x0 + nk with

k ∈ Z.

Proof. See Theorem 2.26 in Section 2.5 of the book. �

We finished the lecture with an application of congruences (see Lecture 7

for continuation).

Lemma 6.6. For any x ∈ Z we have x2 ≡ 0 or 1 mod 4.

Proof. Divide x by 4 with remainder: x = 4q + r. We claim that x2 ≡ r2

mod 4. Indeed, x2 = (4q + r)2 = 16q2 + 8qr + r2 = 4(4q2 + 2qr) + r2, so

x2 ≡ r2 mod 4. Alternatively x = 4q + r implies that x ≡ r mod 4, and

squaring this congruence (which we can do by Theorem 6.3), we get x2 ≡ r2

mod 4.

Since r can only equal 0, 1, 2 or 3, there are 4 possible cases:

Case 1: r = 0. Then r2 = 0, so x2 ≡ 0 mod 4, as desired.

Case 2: r = 1. Then r2 = 1, so x2 ≡ 1 mod 4

Case 3: r = 2. Then r2 = 4. Since 4 ≡ 0 mod 4, using transitivity, we

get x2 ≡ 0 mod 4

Case 4: r = 3. Then r2 = 9 ≡ 1 mod 4, so x2 ≡ 1 mod 4.

Thus, we showed that in all possible cases x2 ≡ 0 or 1 mod 4. �


