
3. Mathematical induction

The general setup where the method of mathematical induction may be

applicable is as follows. Suppose that for every n ∈ N we are given some

statement P (n), depending on n, e.g.

1 + . . . + n =
n(n + 1)

2
P (n).

The statement may have the form of an equality, inequality or something

more involved. We wish to prove that P (n) is true for all n ∈ N. The

method of mathematical induction asserts that this can be accomplished in

two stages:

(i) (Induction base) Prove that P (1) is true

(ii) (Induction step) For every n ∈ N prove the implication “P (n) ⇒
P (n+1)”, that is, assume that P (n) is true and deduce that P (n+1)

is true.

Indeed, if we verified (i) and (ii), then the following sequence of implications

shows that P (n) must be true for all n ∈ N:

P (1)⇒ P (2)⇒ P (3)⇒ . . .

Example 3.1. Prove that 1 + . . . + n = n(n+1)
2 for all n ∈ N.

For simplicity of notation in this example we let sn = 1 + . . . + n. Thus

the statement P (n) we have to prove in this problem can be rewritten as

sn =
n(n + 1)

2
P (n)

Note that by definition s1 = 1 and sn+1 = (1 + . . . + n) + (n + 1) =

sn + (n + 1). The conditions s1 = 1 and sn+1 = sn + (n + 1) for all n ∈ N
completely determine the sequence {sn}, so from this point on we can forget

about the original definition of sn and work with this recursive definition.

Base case: n = 1. We need to check that s1 = 1(1+1)
2 . This is true since

s1 = 1 by definition and 1(1+1)
2 = 1 as well.

Induction step. “P (n) ⇒ P (n + 1)”. Now we fix n and assume that

sn = n(n+1)
2 . Our goal is to show that sn+1 = (n+1)((n+1)+1)

2 = (n+1)(n+2)
2 .

We shall compute both sn+1 and (n+1)(n+2)
2 and show that they are equal

to each other. Multiplying out, we have (n+1)(n+2)
2 = n2+3n+2

2 = n2

2 + 3n
2 + 1.

On the other hand, using the recursive relation sn+1 = sn + (n+ 1) and the
1



2

inductive hypothesis sn = n(n+1)
2 , we get

sn+1 = sn + (n+ 1) =
n(n + 1)

2
+ (n+ 1) =

n2

2
+

n

2
+ n+ 1 =

n2

2
+

3n

2
+ 1.

Thus, we proved that sn+1 = (n+1)(n+2)
2 , so P (n+1) is true. This completes

the induction step.

Example 3.2. Prove that for every n ∈ N

there exist an, bn ∈ Z such that (1 +
√

2)n = an + bn
√

2. P (n)

In this problem the statement P (n) is more complicated as it does not

specify the values of an and bn (they are for us to choose; all we have to

make sure is that an, bn ∈ Z). We shall solve this problem by induction as

follows: first we will define a1, b1 ∈ Z so that P (1) is true. Then, for every

n ∈ N, we will assume that P (n) is true and then define an+1 and bn+1

recursively in terms of an and bn so that P (n + 1) is true.

Base case: n = 1. We set a1 = b1 = 1. Then a1 + b1
√

2 = 1 +
√

2 =

(1 +
√

2)1, so P (1) is true.

Induction step. Now assume that P (n) is true, so that (1 +
√

2)n =

an + bn
√

2 for some an, bn ∈ Z. Before defining an+1 and bn+1, we compute

(1 +
√

2)n+1 using the above formula for (1 +
√

2)n. We have

(1+
√

2)n+1 = (1+
√

2)n·(1+
√

2) = (an+bn
√

2)(1+
√

2) = (an+2bn)+(an+bn)
√

2.

Now it is clear how to define an+1 and bn+1: we set an+1 = an + 2bn

and bn+1 = an + bn. Then (1 +
√

2)n+1 = an+1 + bn+1

√
2 by the above

computation. Also, since an, bn ∈ Z by inductive hypothesis and since in-

tegers are closed under addition and multiplication by 2, we conclude that

an+1, bn+1 ∈ Z. Thus, we verified that P (n + 1) is true.

Here are a few standard variations one sometimes needs to make when

doing an induction proof.

(i) Sometimes it is technically more convenient to do the induction step

in the form “P (n − 1) ⇒ P (n)” (instead of P (n) ⇒ P (n + 1)). Of

course, in this case we assume that n ≥ 2 in the induction step.

(ii) We may be asked to prove that certain statement P (n) holds for all

integers n ≥ a for some a 6= 1. In this case proof by induction works

the same except that in the base case we verify P (a), not P (1).

(iii) It is possible that the statement P (n) holds for all n ∈ N, but the

natural argument for the induction step does not work for some

small values of n (say, it only works for n ≥ 3). In this case we

verify P (1), P (2) and P (3) separately as part of the base case.
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(iv) Finally, sometimes we need to use the complete induction. In this

case, for the induction step we assume not only that P (n) is true

but that P (k) is true for all k ≤ n (that is, P (1), P (2), . . . , P (n) are

all true) and deduce that P (n + 1) is true. Note that the logical

justification of a proof by complete induction remains the same.

We finished the lecture by proving the theorem about division

with remainder for integers.

Theorem 3.3. Let a, b ∈ Z with b 6= 0. Then there exist unique

q, r ∈ Z such that a = bq + r and 0 ≤ r ≤ |b| − 1.


