3. MATHEMATICAL INDUCTION

The general setup where the method of mathematical induction may be
applicable is as follows. Suppose that for every n € N we are given some

statement P(n), depending on n, e.g.

1+...+n=”(”2+1> P(n).

The statement may have the form of an equality, inequality or something
more involved. We wish to prove that P(n) is true for all n € N. The
method of mathematical induction asserts that this can be accomplished in

two stages:

(i) (Induction base) Prove that P(1) is true
(ii) (Induction step) For every n € N prove the implication “P(n) =
P(n+1)”, that is, assume that P(n) is true and deduce that P(n+1)

is true.

Indeed, if we verified (i) and (ii), then the following sequence of implications
shows that P(n) must be true for all n € N:

P(1)= P(2) = P(3) =
Example 3.1. Prove that 1+ ...+ n= w for all n € N.

For simplicity of notation in this example we let s, =1+ ...+ n. Thus
the statement P(n) we have to prove in this problem can be rewritten as

n(n+1)

Sn = g

Note that by definition 1 = 1 and sp41 = (1+...4+n)+(n+1) =

Sn + (n+1). The conditions s; = 1 and s,41 = s, + (n+1) foralln € N

completely determine the sequence {s,}, so from this point on we can forget

P(n)

about the original definition of s,, and work with this recursive definition.

Base case: n = 1. We need to check that s; = w This is true since
(1+1)

s1 = 1 by definition and =1 as well.

Induction step. “P(n) = P(n+1)”. Now we fix n and assume that

Sp = "(nH) Our goal is to show that s,11 = ("H)((nﬂ)ﬂ) = (n+1)2(n+2)

We shall compute both s,41 and W and show that they are equal

to each other. Multiplying out, we have (”+1)2("+2) = 2+§”+2 = 7 430 4.

On the other hand, using the recursive relation s,4+; = s, + (n+ 1) and the
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inductive hypothesis s, = "(";1), we get

n(n+1) n? n n?  3n
_— 1 = — —_ 1:7 _— 1.
5 +(n+1) 5 tgtnt 5t

Thus, we proved that s,11 = MM, so P(n+1) is true. This completes

Sp+1 =Sn+(n+1) =

the induction step.

Example 3.2. Prove that for every n € N
there exist an, by € Z such that (14 vV2)" = ap, + by V2. P(n)

In this problem the statement P(n) is more complicated as it does not
specify the values of a,, and b, (they are for us to choose; all we have to
make sure is that a,,b, € Z). We shall solve this problem by induction as
follows: first we will define aj,b; € Z so that P(1) is true. Then, for every
n € N, we will assume that P(n) is true and then define a,,4+1 and b,
recursively in terms of a,, and b, so that P(n + 1) is true.

Base case: n = 1. Weset a;y = by = 1. Then a; + h1vV2 = 14+ V2 =
(14++/2)1, so P(1) is true.

Induction step. Now assume that P(n) is true, so that (1 + v/2)" =
an + bpy/2 for some ay,, b, € Z. Before defining a, 41 and b, 1, we compute
(14 v/2)"*! using the above formula for (1 4 /2)". We have

Now it is clear how to define a,4+1 and b,y1: we set ap+1 = ap + 2b,
and b,11 = an + by. Then (1 + v2)"! = 4,41 + bpy1v/2 by the above
computation. Also, since a,, b, € Z by inductive hypothesis and since in-
tegers are closed under addition and multiplication by 2, we conclude that
Unt1,bnt1 € Z. Thus, we verified that P(n 4 1) is true.

Here are a few standard variations one sometimes needs to make when

doing an induction proof.

(i) Sometimes it is technically more convenient to do the induction step
in the form “P(n — 1) = P(n)” (instead of P(n) = P(n +1)). Of
course, in this case we assume that n > 2 in the induction step.

(ii) We may be asked to prove that certain statement P(n) holds for all
integers n > a for some a # 1. In this case proof by induction works
the same except that in the base case we verify P(a), not P(1).

(iii) It is possible that the statement P(n) holds for all n € N, but the
natural argument for the induction step does not work for some
small values of n (say, it only works for n > 3). In this case we
verify P(1), P(2) and P(3) separately as part of the base case.



(iv) Finally, sometimes we need to use the complete induction. In this
case, for the induction step we assume not only that P(n) is true
but that P(k) is true for all £ <n (that is, P(1), P(2),...,P(n) are
all true) and deduce that P(n + 1) is true. Note that the logical

justification of a proof by complete induction remains the same.

We finished the lecture by proving the theorem about division

with remainder for integers.

Theorem 3.3. Let a,b € Z with b # 0. Then there exist unique
q,r € Z such that a =bqg+r and 0 < r < |b] — 1.



