26. Examples of quotient rings

In this lecture we will consider some interesting examples of quotient rings. First we will recall the definition of a quotient ring and also define homomorphisms and isomorphisms of rings.

Definition. Let R be a commutative ring and I an ideal of R. The <u>quotient ring</u> R/I is the set of distinct additive cosets a+I, with addition and multiplication defined by

$$(a+I) + (b+I) = (a+b) + I$$
 and $(a+I)(b+I) = ab + I$.

Definition. Let R and S be rings.

- (i) A mapping $\varphi: R \to S$ is called a <u>ring homomorphism</u> if $\varphi(a+b) = \varphi(a) + \varphi(b) \text{ and } \varphi(ab) = \varphi(a)\varphi(b) \text{ for all } a,b \in R.$
- (ii) A ring isomorphism is a bijective ring homomorphism.
- (iii) The rings R and S are called <u>isomorphic</u> if there exists a ring isomorphism $\varphi: R \to S$.

Example 1: Let $R = \mathbb{Z}$ and $I = n\mathbb{Z}$ for some n > 1. Let us show that the quotient ring $R/I = \mathbb{Z}/n\mathbb{Z}$ is isomorphic to \mathbb{Z}_n (as a ring).

Proof. In the course of our study of quotient groups we have already seen that

$$\mathbb{Z}/n\mathbb{Z} = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$$
 as a set.

Moreover, by Proposition 22.3, $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to \mathbb{Z}_n as a group with addition, and an explicit isomorphism is given by the map $\iota : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}_n$ where

$$\iota(x+n\mathbb{Z}) = [x]_n \tag{***}$$

This means that the map $\iota: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}_n$ given by (***) is

- (a) well-defined
- (b) bijective
- (c) preserves group operation (addition), that is,

$$\iota((x+n\mathbb{Z})+(y+n\mathbb{Z}))=\iota((x+y)+n\mathbb{Z})$$
 for all $x,y\in\mathbb{Z}$

We claim that ι is actually a ring isomorphism. In view of (a), (b) and (c) it remains to check that ι also preserves multiplication, which can be done directly (using the definition of multiplication in both $\mathbb{Z}/n\mathbb{Z}$ and \mathbb{Z}_n):

$$\iota((x+n\mathbb{Z})(y+n\mathbb{Z})) = \iota(xy+n\mathbb{Z}) = [xy]_n = [x]_n[y]_n = \iota(x+n\mathbb{Z})\iota(y+n\mathbb{Z}).$$

Remark: We could give a proof without referring to Proposition 22.3, by checking conditions (a), (b) and (c) directly, which is not difficult.

Example 2: Let $R = \mathbb{R}[x]$, the ring of polynomials with real coefficients and $I = (x^2 + 1)R = \{(x^2 + 1)f : f \in R\}$, the principal ideal of R generated by $x^2 + 1$. Let us prove that the quotient ring $R/I = \mathbb{R}[x]/(x^2 + 1)\mathbb{R}[x]$ is isomorphic to \mathbb{C} (complex numbers).

We start with a very important result about polynomials which is an analogue of division with remainder for integers:

Theorem 26.1 (Long division of polynomials). Let F be a field, and let $f, g \in F[x]$ with $g \neq 0$. Then there exist unique polynomials $q, r \in F[x]$ such that f = qg + r and $\deg(r) < \deg(g)$.

Remark: By definition, a nonzero polynomial $h \in F[x]$ has degree n if $h = a_n x^n + \ldots + a_0$ with $a_i \in F$ and $a_n \neq 0$. The degree of the zero polynomial is defined to be $-\infty$.

Proof for Example 2. We shall use the shortcut notation

$$[f] = f + I$$
 for $f \in F[x]$.

With this notation, the formulas for addition and multiplication can be rewritten as [f] + [g] = [f+g] and $[f] \cdot [g] = [fg]$. Observation 25.1 can be restated by saying that

$$[f] = [f'] \iff f' - f \in I. \tag{***}$$

In other words, $[f] = [f'] \iff f' - f$ is divisible by $x^2 + 1$.

Lemma 26.2. For every $f \in \mathbb{R}[x]$ there exist unique $a, b \in \mathbb{R}$ such that [f] = [a + bx].

Proof. We apply Theorem 26.1 with $g = x^2 + 1$. Thus, we can write $f = (x^2 + 1)q + r$ where $\deg(r) < \deg(x^2 + 1) = 2$. Hence $\deg(r) \le 1$, so we can write r = a + bx for some $a, b \in \mathbb{R}$. Since $f - r = (x^2 + 1)q \in I$, by (***) we have [f] = [r] = [a + bx]. This proves the existence part of the Lemma. The uniqueness of a and b follows from the uniqueness of the remainder in Theorem 26.1.

Lemma 26.3. The equality $[x]^2 = -[1]$ holds in R/I.

Proof. This is because
$$[x]^2 - (-[1]) = [x^2] + [1] = [x^2 + 1] = [0]$$
 (since $x^2 + 1 \in I$).

We are now ready to prove that R/I and \mathbb{C} are isomorphic as rings. Define a map $\varphi: \mathbb{C} \to R/I$ by

$$\varphi(a+bi) = [a+bx]$$
 for all $a, b \in \mathbb{R}$

We claim that φ is a ring isomorphism.

- 1. φ is well defined since every complex number is uniquely written as a + bi with $a, b \in \mathbb{R}$.
- 2. Next we claim that φ is bijective. This follows directly from Lemma 26.2: the existence part of Lemma 26.2 implies that φ is surjective, and the uniqueness part of Lemma 26.2 implies that φ is injective (verify the details).
- 3. Next we check that φ preserves addition: for every $a,b,c,d\in\mathbb{R}$ we have

$$\varphi((a+bi) + (c+di)) = \varphi((a+c) + (b+d)i) = [(a+c) + (b+d)x] = [(a+bx) + (c+dx)] = [a+bx] + [c+dx] = \varphi(a+bi) + \varphi(c+di).$$

4. Finally, we check that φ preserves multiplication. This is a bit trickier and uses Lemma 26.3. For every $a, b, c, d \in \mathbb{R}$ we have

$$\varphi((a+bi)\cdot(c+di)) = \varphi(ac-bd+(ad+bc)i) = [ac-bd+(ad+bc)x]$$
 while

$$\varphi(a+bi)\varphi(c+di) = [a+bx][c+dx] = [(a+bx)(c+dx)] = [ac + (ad+bc)x + bdx^2] = [ac + (ad+bc)x] + [bd][x^2].$$

Since $[x^2] = [x]^2 = -[1]$ by Lemma 26.3, we have

$$[ac + (ad + bc)x] + [bd][x^2] = [ac + (ad + bc)x] - [bd][1] = [(ac - bd) + (ad + bc)x].$$

Thus, $\varphi((a + bi) \cdot (c + di)) = \varphi(a + bi)\varphi(c + di).$

Combining 1-4, we conclude that
$$\varphi$$
 is a ring isomorphism.

Another way to prove the isomorphism in Example 2 is by using FTH for rings which is formulated below.

Definition. Let $\varphi : R \to S$ be a ring homomorphism. The set $\operatorname{Ker} \varphi = \{r \in R : \varphi(r) = 0_S\}$ is called the kernel of φ .

Theorem 26.4 (FTH for rings). Let R and S be commutative rings and $\varphi: R \to S$ a ring homomorphism. Then

- (i) Ker φ is an ideal of R
- (ii) The quotient ring $R/\operatorname{Ker} \varphi$ is isomorphic to $\varphi(R)$.

Proof. Part (i) is an easy exercise, and part (ii) is proved similarly to FTH for groups. \Box

Exercise: Define the map $\psi : \mathbb{R}[x] \to \mathbb{C}$ by $\psi(f) = f(i)$. Thus, ψ is the evaluation map which sends every polynomial $f \in \mathbb{R}[x]$ to its value at x = i. Prove that ψ is a surjective ring homomorphism and $\operatorname{Ker} \psi = (x^2 + 1)\mathbb{R}[x]$ and deduce that $\mathbb{R}[x]/(x^2 + 1)\mathbb{R}[x] \cong \mathbb{C}$ using FTH.

Example 3: Again let $R = \mathbb{R}[x]$ and $I = (x^2 - 1)\mathbb{R}[x]$. Prove that the quotient ring R/I has zero divisors and therefore cannot be a field.

Proof. We will use the same general notations as in Example 2: [f] = f + I for $f \in R$. Consider the elements a = [x - 1] and b = [x + 1] of R/I. Then $a \neq [0]$ since $x - 1 \notin I$ (as $x^2 - 1$ does not divide x - 1) and similarly $b \neq [0]$ since $x + 1 \notin I$. On the other hand, $ab = [x - 1][x + 1] = [(x - 1)(x + 1)] = [x^2 - 1] = [0]$. Therefore, a and b are both zero divisors.

Definition. If A and B are rings, their <u>direct sum</u> $A \oplus B$ is defined as follows: as a set $A \oplus B = \{(a,b) : a \in A, b \in B\}$, and ring operations on $A \oplus B$ are defined componentwise:

$$(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$$
 and $(a_1, b_1) \cdot (a_2, b_2) = (a_1 a_2, b_1 b_2)$.

The following facts are easy to check:

- (i) The zero element of $A \oplus B$ is the pair $(0_A, 0_B)$.
- (ii) If A and B are both commutative, then $A \oplus B$ is also commutative
- (iii) If A and B are both rings with unity, then $A \oplus B$ is also a ring with unity, and the unity of $A \oplus B$ is the pair $(1_A, 1_B)$.

Exercise: Prove that the quotient ring $R/I = \mathbb{R}[x]/(x^2-1)\mathbb{R}[x]$ from Example 3 is isomorphic to $\mathbb{R} \oplus \mathbb{R}$.