22. Quotient groups I

22.1. **Definition of quotient groups.** Let G be a group and H a subgroup of G. Denote by G/H the set of distinct (left) cosets with respect to H. In other words, we list all the cosets of the form gH (with $g \in G$) without repetitions and consider each coset as a SINGLE element of the newly formed set G/H. The set G/H (pronounced as $G \mod H$) is called the quotient set.

Next we would like to define a binary operation * on G/H such that (G/H, *) is a group. It is natural to try to define the operation * by the formula

$$gH * kH = gkH$$
 for all $g, k \in G$. (Q)

Before checking group axioms, we need to find out whether * is at least well defined. Our first result shows that * is well defined whenever H is a normal subgroup.

Theorem 22.1. Let G be a group and H a normal subgroup of G. Then the operation * given by (Q) is well defined.

Proof. We need to show that if $g_1, g_2, k_1, k_2 \in G$ are such that $g_1H = g_2H$ and $k_1H = k_2H$, then $g_1k_1H = g_2k_2H$.

Recall that Theorem 19.2 (formulated slightly differently) asserts that given $x, y \in G$ we have $xH = yH \iff x^{-1}y \in H$. Thus, we need to show the following implication

if
$$g_1^{-1}g_2 \in H$$
 and $k_1^{-1}k_2 \in H$, then $(g_1k_1)^{-1}g_2k_2 \in H$ (!)

So, assume that $g_1^{-1}g_2 \in H$ and $k_1^{-1}k_2 \in h$. Then there exist $h, h' \in H$ such that $g_1^{-1}g_2 = h$ and $k_1^{-1}k_2 = h'$, and thus $k_2 = k_1h'$. Hence

$$(g_1k_1)^{-1}g_2k_2 = k_1^{-1}g_1^{-1}g_2k_2 = k_1^{-1}hk_1h' = (k_1^{-1}hk_1)h'.$$

Since *H* is normal, $k_1^{-1}hk_1 \in H$ by Theorem 20.2, and so $(k_1^{-1}hk_1)h' \in H$. Thus, we proved implication (!) and hence also Theorem 22.1.

Remark: 1. The converse of Theorem 22.1 is also true, that is, if the operation * on G/H is well defined, then H must be normal. This fact is left as an exercise, but we will not use it in the sequel.

2. The book uses a different approach to defining the group operation in quotient groups (eventually, of course, the definition is the same, but initial justification is different). We could define the operation * by setting gH * kH to be the product of gH and kH as subsets of G (this operation was

introduced in Lecture 19 and will be referred below as <u>subset product</u>). With this definition, it is clear that the product is well defined, but it is not clear whether G/H is closed under it, that is, whether the subset product of two cosets is again a coset (and in fact, the latter would be false unless H is normal). So, what one needs to show with this approach is that if H is normal, then for any $g, k \in H$, the subset product of gH and kH is equal to the coset gkH. This shows both that G/H is closed under the subset product and also that the subset product coincides with the product given by (Q) (under the assumption H is normal).

Having proved that our operation on G/H is well defined (when H is normal), we check the group axioms, which is quite straightforward.

Theorem 22.2. Let G be a group and H a normal subgroup of G. Then the quotient set G/H is a group with respect to the operation * defined by (Q).

Proof. (G0) G/H is closed under * by definition of cosets.

(G1) Associativity of * follows from the associativity of the group operation on G: for any $g, k, l \in G$ we have

$$gH*(kH*lH) = gH*klH = (g(kl))H = ((gk)l)H = gkH*lH = (gH*kH)*lH.$$

(G2) The identity element of G/H is the special coset H = eH. Indeed, for any $g \in G$ we have gH * H = gH * eH = (ge)H = gH and similarly H * gH = gH.

(G3) Finally, the inverse of a coset gH is the coset $g^{-1}H$. This is because $gH * g^{-1}H = (gg^{-1})H = eH = H$, and similarly $g^{-1}H * gH = H$.

Now we proved that G/H is a group when H is normal, so we will start using the terminology <u>quotient group</u>. From now on we will write products in G/H as $gH \cdot kH$ (or even as gHkH), instead of gH * kH.

22.2. Examples of quotient groups.

Example 1: Let $G = D_8$ (the octic group) and $H = \langle r_2 \rangle = \{r_0, r_2\}$, the cyclic subgroup generated by r_2 . A direct computation shows that H lies in the center Z(G) (in fact, H = Z(G) here, but we will not need the equality). So by Example 2 in Lecture 20, H is normal in G, and thus we can form the quotient group G/H. We can immediately say that

$$|G/H| = \frac{|G|}{|H|} = \frac{8}{2} = 4.$$

Next we determine the elements of G/H, that is, cosets with respect to H.

$$H = r_0 H = \{r_0, r_2\} \qquad r_1 H = \{r_1, r_1 r_2\} = \{r_1, r_3\}$$
$$s_1 H = \{s_1, s_1 r_2\} = \{s_1, s_3\} \qquad s_2 H = \{s_2, s_2 r_2\} = \{s_2, s_4\}.$$

Thus,

$$G/H = \{H, r_1H, s_1H, s_2H\}.$$

By describing elements of G/H in this way we are automatically choosing a subset T of G which contains precisely one element from each coset (such subset T is called a <u>transversal</u>; we will study this notion in more detail in Lecture 23). In this example our choice is $T = \{r_0, r_1, s_1, s_2\}$.

Note that this choice of T is not unique (e.g. $T' = \{r_0, r_3, s_1, s_4\}$ would have worked equally fine), but once we made a choice of T, we must stick to it in the following sense: when we do computations in G/H, every element of G/H must be put in the form tH where $t \in T$ (in order for us to see whether two given elements of G/H are equal or not).

In homework you will be asked to compute the multiplication table for G/H. Here we just do a sample computation – let us compute the products $s_2H \cdot s_1H$ and $s_1H \cdot s_2H$.

By direct computation in D_8 we get that $s_2s_1 = r_1$ and $s_1s_2 = r_3$, and thus by definition of the product in the quotient group we have

$$s_2H \cdot s_1H = r_1H$$
 and $s_1H \cdot s_2H = r_3H$.

In the first case we got the final answer; in the second case we did not since r_3 is not in our transversal T. We need to find the (unique) element $t \in T$ such that $tH = r_3H$. To do this we look at our description of cosets and locate the unique coset containing r_3 .

We see that $r_3 \in r_1H$ (and $r_1 \in T$). Thus, $r_1H \cap r_3H \neq \emptyset$, and since any two cosets either coincide or are disjoint, we conclude that $r_3H = r_1H$. Thus, our final answer is

$$s_2H \cdot s_1H = r_1H$$
 and $s_1H \cdot s_2H = r_1H$.

In particular, we see that s_2H and s_1H commute in G/H even though s_2 and s_1 do not commute in G. Such thing will happen very often in quotient groups.

Example 2: Let $G = \mathbb{Z}$ (with addition) and $H = 4\mathbb{Z}$. Here G is abelian, so normality holds automatically. Since operation in G is +, we use additive notation for cosets: g + H, with $g \in G$.

In this example we cannot use the formula $|G/H| = \frac{|G|}{|H|}$ since G is infinite, but we can see directly that G/H has 4 elements:

$$H = 0 + H = \{\dots, -4, 0, 4, 8, \dots\} \quad 1 + H = \{\dots, -3, 1, 5, 9, \dots\}$$
$$2 + H = \{\dots, -2, 2, 6, 10, \dots\} \quad 3 + H = \{\dots, -1, 3, 7, 11, \dots\}$$

Thus,

$$G/H = \{H, 1 + H, 2 + H, 3 + H\}.$$

In general, for any $x \in \mathbb{Z}$ we have $x + H = \{y \in \mathbb{Z} : y \equiv x \mod 4\}$. Arguing as in Example 1, we compute the "multiplication" table (multipli-

cation is in quotes since in this example we use additive notation):

	H	1 + H	2 + H	3 + H
H	Н	1+H	2 + H	3+H
1 + H	1+H	2+H	3 + H	Н
2 + H	2+H	3+H	Н	1 + H
3 + H	3+H	H	1 + H	2+H

This should look very familiar. We see immediately that the "multiplication" table for G/H coincides with the "multiplication" table for $(\mathbb{Z}_4, +)$, up to relabeling $i + H \mapsto [i]_4$. In particular, the quotient group $G/H = \mathbb{Z}/4\mathbb{Z}$ is isomorphic to \mathbb{Z}_4 .

This makes perfect sense since, as we see from the above computation, the cosets with respect to H are precisely the congruence classes mod 4, and the operation + on G/H was defined by the same formula as addition in \mathbb{Z}_4 : in G/H we have (i + H) + (j + H) = (i + j) + H (by formula (Q) from the beginning of the lecture), and in \mathbb{Z}_4 we have $[i]_4 + [j]_4 = [i + j]_4$, and as we just explained, x + H is just another name for $[x]_4$.

It is clear that the same remains true when 4 is replaced by any integer $n \ge 2$:

Proposition 22.3. Let $n \ge 2$ be an integer. The quotient group $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to \mathbb{Z}_n via the map $(i + n\mathbb{Z}) \mapsto [i]_n$.

22.3. Quotient groups and homomorphisms. Our next goal is to show that quotient groups are closely related to homomorphisms.

First let us show that each quotient group G/H naturally gives rise to a homomorphism $\pi: G \to G/H$, called the natural projection from G to G/H.

Theorem 22.4. Let G be a group and H a normal subgroup of G. Define the map $\pi: G \to G/H$ by

$$\pi(g) = gH$$
 for all $g \in G$.

Then π is a surjective homomorphism and Ker $\pi = H$.

Proof. (i) π is a homomorphism since $\pi(gk) = gkH = gH \cdot kH = \pi(g)\pi(k)$ (where the middle equality holds by the definition of operation in G/H).

(ii) π is surjective since by definition every element of G/H is equal to gH for some $g \in G$.

(iii) Finally, Ker $\pi = \{g \in G : gH = H\}$ (since H is the identity element of G/H). By Problem 3(a) in Homework#10 we have $gH = H \iff g \in H$, so Ker $\pi = H$, as desired.

Now suppose that we are given two groups G and H and a homomorphism $\varphi : G \to H$. By Theorem 20.3, Ker φ is a normal subgroup of G, and thus we can consider the quotient group $G/\text{Ker }\varphi$. The next theorem, called the **fundamental theorem of homomorphisms** (abbreviated as FTH) asserts that $G/\text{Ker }\varphi$ is always isomorphic to the range group $\varphi(G)$.

Theorem (FTH). Let G, H be groups and $\varphi : G \to H$ a homomorphism. Then

$$G/\operatorname{Ker} \varphi \cong \varphi(G).$$
 (***)

The proof and applications of FTH will be discussed in the next lecture. At this point we just make two simple, but useful observations.

The first one is a special case of FTH dealing with surjective homomorphisms (in which case $\varphi(G) = H$).

Corollary 22.5. Let G, H be groups and $\varphi : G \to H$ a <u>surjective</u> homomorphism. Then $G/\operatorname{Ker} \varphi \cong H$.

Also note that FTH immediately implies the Range-Kernel Theorem. Indeed, the isomorphism $G/\operatorname{Ker} \varphi \cong \varphi(G)$ implies that $|G/\operatorname{Ker} \varphi| = |\varphi(G)|$. If G is finite, then $|G/\operatorname{Ker} \varphi| = \frac{|G|}{|\operatorname{Ker} \varphi|}$, so $\frac{|G|}{|\operatorname{Ker} \varphi|} = |\varphi(G)|$. Multiplying both sides by $|\operatorname{Ker} \varphi|$, we get the Range-Kernel Theorem.