
22. Quotient groups I

22.1. Definition of quotient groups. Let G be a group and H a subgroup
of G. Denote by G/H the set of distinct (left) cosets with respect to H.
In other words, we list all the cosets of the form gH (with g ∈ G) without
repetitions and consider each coset as a SINGLE element of the newly formed
set G/H. The set G/H (pronounced as G mod H) is called the quotient set.

Next we would like to define a binary operation ∗ on G/H such that (G/H, ∗)
is a group. It is natural to try to define the operation ∗ by the formula

gH ∗ kH = gkH for all g, k ∈ G. (Q)

Before checking group axioms, we need to find out whether ∗ is at least well
defined. Our first result shows that ∗ is well defined whenever H is a normal
subgroup.

Theorem 22.1. Let G be a group and H a normal subgroup of G. Then
the operation ∗ given by (Q) is well defined.

Proof. We need to show that if g1, g2, k1, k2 ∈ G are such that g1H = g2H

and k1H = k2H, then g1k1H = g2k2H.

Recall that Theorem 19.2 (formulated slightly differently) asserts that given
x, y ∈ G we have xH = yH ⇐⇒ x−1y ∈ H. Thus, we need to show the
following implication

if g−1
1 g2 ∈ H and k−1

1 k2 ∈ H, then (g1k1)−1g2k2 ∈ H (!)

So, assume that g−1
1 g2 ∈ H and k−1

1 k2 ∈ h. Then there exist h, h′ ∈ H such
that g−1

1 g2 = h and k−1
1 k2 = h′, and thus k2 = k1h

′. Hence

(g1k1)−1g2k2 = k−1
1 g−1

1 g2k2 = k−1
1 hk1h

′ = (k−1
1 hk1)h′.

Since H is normal, k−1
1 hk1 ∈ H by Theorem 20.2, and so (k−1

1 hk1)h′ ∈ H.
Thus, we proved implication (!) and hence also Theorem 22.1. �

Remark: 1. The converse of Theorem 22.1 is also true, that is, if the
operation ∗ on G/H is well defined, then H must be normal. This fact is
left as an exercise, but we will not use it in the sequel.

2. The book uses a different approach to defining the group operation in
quotient groups (eventually, of course, the definition is the same, but initial
justification is different). We could define the operation ∗ by setting gH ∗
kH to be the product of gH and kH as subsets of G (this operation was
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introduced in Lecture 19 and will be referred below as subset product). With
this definition, it is clear that the product is well defined, but it is not clear
whether G/H is closed under it, that is, whether the subset product of two
cosets is again a coset (and in fact, the latter would be false unless H is
normal). So, what one needs to show with this approach is that if H is
normal, then for any g, k ∈ H, the subset product of gH and kH is equal
to the coset gkH. This shows both that G/H is closed under the subset
product and also that the subset product coincides with the product given
by (Q) (under the assumption H is normal).

Having proved that our operation on G/H is well defined (when H is
normal), we check the group axioms, which is quite straightforward.

Theorem 22.2. Let G be a group and H a normal subgroup of G. Then
the quotient set G/H is a group with respect to the operation ∗ defined by
(Q).

Proof. (G0) G/H is closed under ∗ by definition of cosets.
(G1) Associativity of ∗ follows from the associativity of the group oper-

ation on G: for any g, k, l ∈ G we have

gH∗(kH∗lH) = gH∗klH = (g(kl))H = ((gk)l)H = gkH∗lH = (gH∗kH)∗lH.

(G2) The identity element of G/H is the special coset H = eH. Indeed,
for any g ∈ G we have gH ∗ H = gH ∗ eH = (ge)H = gH and similarly
H ∗ gH = gH.

(G3) Finally, the inverse of a coset gH is the coset g−1H. This is because
gH ∗ g−1H = (gg−1)H = eH = H, and similarly g−1H ∗ gH = H. �

Now we proved that G/H is a group when H is normal, so we will start
using the terminology quotient group. From now on we will write products
in G/H as gH · kH (or even as gHkH), instead of gH ∗ kH.

22.2. Examples of quotient groups.
Example 1: Let G = D8 (the octic group) and H = 〈r2〉 = {r0, r2}, the
cyclic subgroup generated by r2. A direct computation shows that H lies in
the center Z(G) (in fact, H = Z(G) here, but we will not need the equality).
So by Example 2 in Lecture 20, H is normal in G, and thus we can form
the quotient group G/H. We can immediately say that

|G/H| = |G|
|H|

=
8
2

= 4.
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Next we determine the elements of G/H, that is, cosets with respect to H.

H = r0H = {r0, r2} r1H = {r1, r1r2} = {r1, r3}

s1H = {s1, s1r2} = {s1, s3} s2H = {s2, s2r2} = {s2, s4}.

Thus,

G/H = {H, r1H, s1H, s2H}.

By describing elements of G/H in this way we are automatically choosing
a subset T of G which contains precisely one element from each coset (such
subset T is called a transversal; we will study this notion in more detail in
Lecture 23). In this example our choice is T = {r0, r1, s1, s2}.

Note that this choice of T is not unique (e.g. T ′ = {r0, r3, s1, s4} would
have worked equally fine), but once we made a choice of T , we must stick to
it in the following sense: when we do computations in G/H, every element
of G/H must be put in the form tH where t ∈ T (in order for us to see
whether two given elements of G/H are equal or not).

In homework you will be asked to compute the multiplication table for G/H.
Here we just do a sample computation – let us compute the products s2H ·
s1H and s1H · s2H.

By direct computation in D8 we get that s2s1 = r1 and s1s2 = r3, and
thus by definition of the product in the quotient group we have

s2H · s1H = r1H and s1H · s2H = r3H.

In the first case we got the final answer; in the second case we did not since
r3 is not in our transversal T . We need to find the (unique) element t ∈ T

such that tH = r3H. To do this we look at our description of cosets and
locate the unique coset containing r3.

We see that r3 ∈ r1H (and r1 ∈ T ). Thus, r1H ∩ r3H 6= ∅, and since
any two cosets either coincide or are disjoint, we conclude that r3H = r1H.
Thus, our final answer is

s2H · s1H = r1H and s1H · s2H = r1H.

In particular, we see that s2H and s1H commute in G/H even though s2

and s1 do not commute in G. Such thing will happen very often in quotient
groups.

Example 2: Let G = Z (with addition) and H = 4Z. Here G is abelian, so
normality holds automatically. Since operation in G is +, we use additive
notation for cosets: g + H, with g ∈ G.
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In this example we cannot use the formula |G/H| = |G|
|H| since G is infinite,

but we can see directly that G/H has 4 elements:

H = 0 + H = {. . . ,−4, 0, 4, 8, . . .} 1 + H = {. . . ,−3, 1, 5, 9, . . .}

2 + H = {. . . ,−2, 2, 6, 10, . . .} 3 + H = {. . . ,−1, 3, 7, 11, . . .}

Thus,

G/H = {H, 1 + H, 2 + H, 3 + H}.

In general, for any x ∈ Z we have x + H = {y ∈ Z : y ≡ x mod 4}.

Arguing as in Example 1, we compute the “multiplication” table (multipli-
cation is in quotes since in this example we use additive notation):

H 1 + H 2 + H 3 + H
H H 1 + H 2 + H 3 + H

1 + H 1 + H 2 + H 3 + H H
2 + H 2 + H 3 + H H 1 + H
3 + H 3 + H H 1 + H 2 + H

This should look very familiar. We see immediately that the “multiplication”
table for G/H coincides with the “multiplication” table for (Z4,+), up to
relabeling i + H 7→ [i]4. In particular, the quotient group G/H = Z/4Z is
isomorphic to Z4.

This makes perfect sense since, as we see from the above computation, the
cosets with respect to H are precisely the congruence classes mod 4, and the
operation + on G/H was defined by the same formula as addition in Z4: in
G/H we have (i + H) + (j + H) = (i + j) + H (by formula (Q) from the
beginning of the lecture), and in Z4 we have [i]4 + [j]4 = [i + j]4, and as we
just explained, x + H is just another name for [x]4.

It is clear that the same remains true when 4 is replaced by any integer
n ≥ 2:

Proposition 22.3. Let n ≥ 2 be an integer. The quotient group Z/nZ is
isomorphic to Zn via the map (i + nZ) 7→ [i]n.

22.3. Quotient groups and homomorphisms. Our next goal is to show
that quotient groups are closely related to homomorphisms.
First let us show that each quotient group G/H naturally gives rise to a
homomorhism π : G → G/H, called the natural projection from G to G/H.

Theorem 22.4. Let G be a group and H a normal subgroup of G. Define
the map π : G → G/H by

π(g) = gH for all g ∈ G.
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Then π is a surjective homomorphism and Ker π = H.

Proof. (i) π is a homomorphism since π(gk) = gkH = gH · kH = π(g)π(k)
(where the middle equality holds by the definition of operation in G/H).

(ii) π is surjective since by definition every element of G/H is equal to
gH for some g ∈ G.

(iii) Finally, Ker π = {g ∈ G : gH = H} (since H is the identity element
of G/H). By Problem 3(a) in Homework#10 we have gH = H ⇐⇒ g ∈ H,
so Kerπ = H, as desired. �

Now suppose that we are given two groups G and H and a homomorphism
ϕ : G → H. By Theorem 20.3, Kerϕ is a normal subgroup of G, and
thus we can consider the quotient group G/Ker ϕ. The next theorem, called
the fundamental theorem of homomorphisms (abbreviated as FTH)
asserts that G/Ker ϕ is always isomorphic to the range group ϕ(G).

Theorem (FTH). Let G, H be groups and ϕ : G → H a homomorphism.
Then

G/Ker ϕ ∼= ϕ(G). (∗ ∗ ∗)

The proof and applications of FTH will be discussed in the next lecture. At
this point we just make two simple, but useful observations.

The first one is a special case of FTH dealing with surjective homomor-
phisms (in which case ϕ(G) = H).

Corollary 22.5. Let G, H be groups and ϕ : G → H a surjective homo-
morphism. Then G/Ker ϕ ∼= H.

Also note that FTH immediately implies the Range-Kernel Theorem. In-
deed, the isomorphism G/Ker ϕ ∼= ϕ(G) implies that |G/Ker ϕ| = |ϕ(G)|. If
G is finite, then |G/Ker ϕ| = |G|

|Ker ϕ| , so |G|
|Ker ϕ| = |ϕ(G)|. Multiplying both

sides by |Ker ϕ|, we get the Range-Kernel Theorem.


