
2. Introduction to commutative rings (continued)

2.1. New examples of commutative rings. Recall that in the first lec-

ture we defined the notions of commutative rings and field and gave some

examples of those. All the examples we discussed last time were already

known to us (mostly from high school), so we did not really establish any-

thing new by stating that those were commutative rings/fields (we simply

rephrased what we already knew in a new language). In this lecture we will

describe two essentially new examples of commutative rings with 1 where,

in particular, we will need to define + and · (rather than use operations that

we are already familiar with).

Example 2.1. Let X be any set, and let R = P(X), the set of all subsets

of X (also known as the power set of X). For instance, if X is the two

element set {0, 1}, then R has 4 elements: {0}, {1}, ∅ (the empty set) and

{0, 1} = X.

Define binary operations + and · on R by

A ·B = A ∩B (the intersection of A and B) and

A + B = (A ∪B) \ (A ∩B).

The set (A ∪ B) \ (A ∩ B) is called the symmetric difference of A and B.

This name is justified by the equality (A∪B) \ (A∩B) = (A \B)∪ (B \A)

(which is straightforward to check). In logic, the operation that produces

(A∪B)\(A∩B) from A and B is called the ‘exclusive or’. This terminology

is also clear since (A ∪B) \ (A ∩B) is the set of elements which lie in A or

in B but not in both.

We claim that R with these operations is a commutative ring with 1, that

is, satisfies axioms (A0)-(A4), (M0)-(M3) and (D1)-(D2). In class we will

check multiplication axioms (M0)-(M3); the rest will be left as a homework

problem.

(M0) This simply says that if A,B are subsets of X, then A∩B is also a

subset of X, which is clearly true.

(M1) asserts that A ∩B = B ∩A for all A,B ⊆ X. This is also clear.

(M2) asserts that A ∩ (B ∩ C) = (A ∩ B) ∩ C for all A,B,C ⊆ X. This

is also a property you are probably familiar with, but it is not nearly as

obvious as (M1), so let us prove it.

A standard technique for proving that two sets are equal is to show that

they are contained in each other. Verifications of inclusions A ∩ (B ∩ C) ⊆
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(A∩B)∩C and (A∩B)∩C ⊆ A∩ (B ∩C) are very similar, so we will only

do the first one.

To prove that A ∩ (B ∩ C) ⊆ (A ∩ B) ∩ C we need to show that any

x ∈ A∩(B∩C) is also an element of (A∩B)∩C. So take any x ∈ A∩(B∩C).

Then, by definition of the intersection, x ∈ A and x ∈ B ∩C, whence x ∈ A

and x ∈ B and x ∈ C. The first two conditions imply that x ∈ A∩B. Thus,

x ∈ A ∩ B and x ∈ C, whence x ∈ (A ∩ B) ∩ C. Thus, we showed that

A ∩ (B ∩ C) ⊆ (A ∩B) ∩ C.

Finally, to check (M3) we need to show that there exists a subset of X

(which we denote by symbol 1) such that 1∩A = A for all A ⊆ X. Clearly,

this property holds if we set 1 = X.

Example 2.2. Let n ≥ 2 be an integer, and let Zn = {0, 1, . . . , n − 1} =

{x ∈ Z : 0 ≤ x ≤ n− 1}. We want to define addition and multiplication on

Zn which will turn it in a commutative ring with 1.

First of all note that we cannot use the usual addition and multiplication

since Zn is not closed under those. We shall denote the addition and multi-

plication we will be defining by symbols ⊕ and � (to avoid confusion with

the usual addition and multiplication). To make our task more specific we

will impose an extra requirement on the operations ⊕ and � we are trying

to define:

(*) x⊕ y = x+ y whenever 0 ≤ x+ y ≤ n− 1 and x� y = xy whenever

0 ≤ xy ≤ n − 1 (where the sum and the product on the right-hand

sides are the usual addition and multiplication).

Informally, condition (*) means that we want the newly defined operations

⊕ and � to be as close to + and · as possible.

So, the precise question we are trying to answer is the following:

Question 2.3. Can we define operations ⊕ and � on Zn such that Zn with

those operations is a commutative ring with 1 and, in addition, condition

(*) holds. If yes, is there a unique way to do it?

It turns out that the answer to both parts of this question is positive.

Today we will address the uniqueness part, that is, we will try to show that

if we want ⊕ and � to satisfy all of the above conditions, then at least we

do not have any choice. In class we will consider this problem for n = 3,

and in the homework you will be asked to do the same for n = 4 and 5 (once

you do the cases n = 4, 5, try to extend the argument to arbitrary n).
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So, let n = 3, and let us start with addition ⊕. By (*) we are already

“committed” to having equalities 0⊕ x = x⊕ 0 = 0 for all x and 1⊕ 1 = 2,

so the only remaining questions are what is 1 ⊕ 2 and what is 2 ⊕ 2 (since

we want (A1) to hold, we must have 1⊕ 2 = 2⊕ 1).

We claim that 1 ⊕ 2 = 0. We argue that any other choice for 1 ⊕ 2

immediately leads to a contradiction. Indeed, if 1 ⊕ 2 6= 0, then 1 ⊕ 2 = 1

or 1 ⊕ 2 = 2. But if 1 ⊕ 2 = 1, then 1 ⊕ 2 = 1 ⊕ 0, so by the additive

cancellation law (which, as we showed last time, holds in any ring), we get

2 = 0, which is impossible since by our setup 0 and 2 are different elements

of Z3. Similarly, 1⊕ 2 = 2 would imply 1 = 0, which again is impossible.

So, we must have 1 ⊕ 2 = 2 ⊕ 1 = 0. Similar argument shows that the

only possible choice for 2⊕ 2 is 2⊕ 2 = 1. Thus, we completed the addition

table:
⊕ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

For multiplication table we already know that we must have 0 � x =

x � 0 = 0 for all x, 1 � x = x � 1 = x for all x, so the only question is

what is 2 � 2. To determine this, we use the distributivity axiom: 2 � 2 =

(1⊕1)�2 = 1�2⊕1�2 = 2⊕2 = 1, so the multiplication table is completed

as well:
� 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

So, what did we accomplish? We showed that if there is any way to define

⊕ and � on Z3 such that axioms of a commutative ring with 1 and condition

(*) all hold, then ⊕ and � must be defined by the above tables. We still

do not know if ⊕ and � defined as above will satisfy these conditions – this

turns out to be true, but so far we do not have tools to prove it in a nice

way (we will get back to this problem in Lecture 8).

However, if for now we assume without proof that Z3 with the above

operations is indeed a commutative ring with 1, then we can already answer

some questions about it. For instance, we can determine whether Z3 is a

filed directly from the multiplication table. Indeed, we have 1 · 1 = 1 and

2 · 2 = 1, so both 1 and 2 are invertible (1−1 = 1 and 2−1 = 2). Thus, all

nonzero elements of Z3 have a multiplicative inverse, so Z3 is indeed a field.
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2.2. Inequalities and ordered rings. In the last lecture we formalized

what we mean by ‘standard properties of arithmetic operations’ in the form

of axioms and define commutative rings and fields in terms of those axioms.

Today we will do the same with inequalities. Again, we start with an idea

for the definition.

Very informally speaking, an ordered ring is a ring in which we can talk

about positive/negative elements and inequalities so that the usual prop-

erties holds. Based on this description, we would expect that Z, Q and R
(with inequalities defined in the usual way) are ordered rings. We now give

a formal definition

Definition. Let R be a ring. We say that R is an ordered ring if R has a

distinguished subset R>0 (called the subset of positive elements) satisfying

the following three axioms:

(O1) For every x ∈ R exactly one of the following three conditions is

true: x ∈ R>0, −x ∈ R>0 or x = 0

(O2) If x ∈ R>0 and y ∈ R>0, then x + y ∈ R>0 (the sum of two positive

elements is positive)

(O3) If x ∈ R>0 and y ∈ R>0, then xy ∈ R>0 (the product of two positive

elements is positive)

Remark: In class we used the notation R+ instead of R>0.

Note that the above axioms only refer to positive elements and not to

inequalities, but we can define inequalities in terms of positive elements.

Given an ordered ring R and x, y ∈ R, we define x > y ⇐⇒ x − y ∈ R>0

and x < y ⇐⇒ y > x (thus, x < y ⇐⇒ y − x ∈ R>0).

All the standard properties of inequalities can be deduced from axioms

(O1)-(O3). Below we show how to establish the transitivity property.

Example 2.4. Let R be an ordered ring. Then the relation > is transitive,

that is, if x > y and y > z for some x, y, z ∈ R, then x > z.

Proof. We need to express the given inequalities x > y and y > z in terms

of positive elements, so that we can use the axioms. By definition, x > y

implies that x − y ∈ R>0 and y > z implies that y − z ∈ R>0. By (02)

we have (x − y) + (y − z) ∈ R>0. Since (x − y) + (y − z) = x − z (this

identity follows from ring axioms similarly to other properties we verified in

Lecture 1), we conclude that x− z ∈ R>0, so again by definition x > z. �


