19. Cosets

19.1. Products of subsets in a group.

Definition. Let G be a group and A and B subsets of G. The product of A and B is the subset AB of G defined by

$$AB = \{x \in G : x = ab \text{ for some } a \in A, b \in B.\}$$

The following lemma is left as a homework exercise:

Lemma 19.1. The multiplication of subsets in a group is associative, that is, if A, B and C are subsets of a group G, then $(AB) \cdot C = A \cdot (BC)$.

Definition. Let G be a group and H a subgroup of G. If g is an element of G, the set $gH = \{g\}H$ (the product of subsets $\{g\}$ and H) will be called a <u>left coset of H</u>. In other words,

$$gH = \{x \in G : x = gh \text{ for some } h \in H\}$$

(here g is fixed and h ranges over the entire subgroup H.)

From now on a *coset* will mean a left coset.

Below we collect some basic properties of cosets.

- **Claim.** Let G be a group and H a subgroup of G.
- (cos1) Every element of G lies in one of the cosets of H. This is because $g = g \cdot e \in gH$ for every $g \in G$.
- (cos2) One of the cosets of H is H itself. This is because H = eH.
- (cos3) If H is finite, then |gH| = |H| for every $g \in G$. Indeed, suppose that k = |H| and $H = \{h_1, \ldots, h_k\}$. By cancellation law, elements gh_1, \ldots, gh_k are distinct, so $|gH| = |\{gh_1, \ldots, gh_k\}|$.
- (cos4) Any two cosets of H are either the same or disjoint. In other words, for any $g, k \in G$ either gH = kH or $gH \cap kH = \emptyset$.

Property (cos4) is a special case of the following more general result:

Theorem 19.2. Let G be a group, H a subgroup of G and $g, k \in G$.

- (i) If $g^{-1}k \in H$, then gH = kH
- (ii) If $g^{-1}k \notin H$, then $gH \cap kH = \emptyset$.

Proof. (i) We are given that $g^{-1}k = h$ for some $h \in H$. Hence k = gh, and therefore

$$kH = (gh)H = g(hH) \subseteq gH.$$

Here the equality (gh)H = g(hH) holds by Lemma 19.1, and inclusion $g(hH) \subseteq gH$ follows from $hH \subseteq H$ which, in turn, holds since H is closed under group operation.

Thus, $kH \subseteq gH$. Next note that by product inverse formula $k^{-1}g = (g^{-1}k)^{-1} = h^{-1} \in H$ (since H is closed under inversion). Thus, we can repeat the above argument with roles of g and k switched and conclude that $gH \subseteq kH$.

Thus, we showed that $kH \subseteq gH$ and $gH \subseteq kH$, and so kH = gH.

(ii) We will prove this by contrapositive. Suppose that $gH \cap kH \neq \emptyset$, so there exists $x \in gH \cap kH$. This means that $x = gh_1$ and $x = kh_2$ for some $h_1, h_2 \in H$. Hence $kh_2 = gh_1$. Multiplying by g^{-1} on the left and h_2^{-1} on the right, we get $g^{-1}k = h_1h_2^{-1} \in H$, as desired.

19.2. Proof of Lagrange Theorem.

Lagrange Theorem. Let G be a finite group and H a subgroup of G. Then |H| divides |G|.

Proof. Let g_1H, \ldots, g_kH be the complete list of cosets of H without repetition. Then $G = g_1H \cup \ldots \cup g_kH$ by (cos1) and $g_iH \cap g_jH = \emptyset$ for $i \neq j$ by (cos3). Therefore, $|G| = \sum_{i=1}^k |g_iH|$.

Finally, $|g_iH| = |H|$ for each *i* by (cos3), whence |G| = k|H|, so |H| divides |G|.

Definition. Let G be a group and H a subgroup of G. The number of distinct cosets of H is called the index of H in G and denoted by [G:H].

The proof of Lagrange theorem shows that when G is a finite group, the index of a subgroup is given by the formula

$$[G:H] = \frac{|G|}{|H|}.$$

19.3. Examples of coset multiplication.

Example 1. $G = S_3 = permutations of \{1, 2, 3\}, H = \langle (1, 2) \rangle = \{e, (1, 2)\}.$

In this example Then |G| = 6, H = 2, so H should have $3 = \frac{6}{2} = \frac{|G|}{|H|}$ cosets. This is confirmed by an explicit computation below.

g	gH
e	$\{e, (1, 2)\}$
(1,2)	$\{(1,2),(1,2)(1,2)\} = \{(1,2),e\}$
(1,3)	$\{(1,3),(1,3)(1,2)\} = \{(1,3),(1,2,3)\}$
(2,3)	$\{(2,3),(2,3)(1,2)\} = \{(2,3),(1,3,2)\}$
(1, 2, 3)	$\{(1,2,3),(1,2,3)(1,2)\} = \{(1,2,3),(1,3)\}$
(1, 3, 2)	$\{(1,3,2),(1,3,2)(1,2)\} = \{(1,3,2),(2,3)\}$

The distinct cosets of H are $\{e, (1, 2)\}, \{(1, 3), (1, 2, 3)\}$ and $\{(2, 3), (1, 3, 2)\}.$

Example 2. Let $G = (\mathbb{Z}, +)$, $H = 3\mathbb{Z} = \{3k : k \in \mathbb{Z}\}$. Here the group operation is addition, so cosets of H are subsets of the form g + H with $g \in G$.

We have $0 + H = H = \{3k : k \in \mathbb{Z}\}, 1 + H = \{1 + 3k : k \in \mathbb{Z}\}$ and $2 + H = \{2 + 3k : k \in \mathbb{Z}\}$. These 3 cosets cover the entire \mathbb{Z} , so there are 3 distinct cosets.

In general, for any $i \in \mathbb{Z}$ we have $i + H = \{x \in \mathbb{Z} : x \equiv i \mod 3\} = [i]_3$, the congruence class of $i \mod 3$.