19. COSETS

19.1. Products of subsets in a group.

Definition. Let G be a group and A and B subsets of G . The product of A and B is the subset AB of G defined by

$$
AB = \{x \in G : x = ab \text{ for some } a \in A, b \in B.\}
$$

The following lemma is left as a homework exercise:

Lemma 19.1. The multiplication of subsets in a group is associative, that is, if A, B and C are subsets of a group G , then $(AB) \cdot C = A \cdot (BC)$.

Definition. Let G be a group and H a subgroup of G. If g is an element of G, the set $gH = \{g\}H$ (the product of subsets $\{g\}$ and H) will be called a left coset of H . In other words,

$$
gH = \{x \in G : x = gh \text{ for some } h \in H\}
$$

(here g is fixed and h ranges over the entire subgroup H .)

From now on a coset will mean a left coset.

Below we collect some basic properties of cosets.

Claim. Let G be a group and H a subgroup of G.

- $(cos1)$ Every element of G lies in one of the cosets of H. This is because $g = g \cdot e \in gH$ for every $g \in G$.
- (cos2) One of the cosets of H is H itself. This is because $H = eH$.
- (cos3) If H is finite, then $|gH| = |H|$ for every $g \in G$. Indeed, suppose that $k = |H|$ and $H = \{h_1, \ldots, h_k\}$. By cancellation law, elements gh_1, \ldots, gh_k are distinct, so $|gH| = |\{gh_1, \ldots, gh_k\}|$.
- (cos4) Any two cosets of H are either the same or disjoint. In other words, for any $q, k \in G$ either $qH = kH$ or $qH \cap kH = \emptyset$.

Property (cos4) is a special case of the following more general result:

Theorem 19.2. Let G be a group, H a subgroup of G and $g, k \in G$.

- (i) If $g^{-1}k \in H$, then $gH = kH$
- (ii) If $g^{-1}k \notin H$, then $gH \cap kH = \emptyset$.

Proof. (i) We are given that $g^{-1}k = h$ for some $h \in H$. Hence $k = gh$, and therefore

$$
kH = (gh)H = g(hH) \subseteq gH.
$$

Here the equality $(gh)H = g(hH)$ holds by Lemma 19.1, and inclusion $q(hH) \subset qH$ follows from $hH \subset H$ which, in turn, holds since H is closed under group operation.

Thus, $kH \subseteq gH$. Next note that by product inverse formula $k^{-1}g =$ $(g^{-1}k)^{-1} = h^{-1} \in H$ (since H is closed under inversion). Thus, we can repeat the above argument with roles of g and k switched and conclude that $gH \subseteq kH$.

Thus, we showed that $kH \subseteq gH$ and $gH \subseteq kH$, and so $kH = gH$.

(ii) We will prove this by contrapositive. Suppose that $gH \cap kH \neq \emptyset$, so there exists $x \in gH \cap kH$. This means that $x = gh_1$ and $x = kh_2$ for some $h_1, h_2 \in H$. Hence $kh_2 = gh_1$. Multiplying by g^{-1} on the left and h_2^{-1} on the right, we get $g^{-1}k = h_1h_2^{-1} \in H$, as desired.

19.2. Proof of Lagrange Theorem.

Lagrange Theorem. Let G be a finite group and H a subgroup of G. Then | H | divides $|G|$.

Proof. Let q_1H, \ldots, q_kH be the complete list of cosets of H without repetition. Then $G = g_1 H \cup ... \cup g_k H$ by (cos1) and $g_i H \cap g_j H = \emptyset$ for $i \neq j$ by (cos3). Therefore, $|G| = \sum_{i=1}^{k} |g_i H|$.

Finally, $|g_iH| = |H|$ for each i by (cos3), whence $|G| = k|H|$, so $|H|$ divides $|G|$.

Definition. Let G be a group and H a subgroup of G . The number of distinct cosets of H is called the index of H in G and denoted by $[G:H]$.

The proof of Lagrange theorem shows that when G is a finite group, the index of a subgroup is given by the formula

$$
[G:H] = \frac{|G|}{|H|}.
$$

19.3. Examples of coset multiplication.

Example 1. $G = S_3 = permutations of \{1, 2, 3\}, H = \langle (1, 2) \rangle = \{e, (1, 2)\}.$

In this example Then $|G| = 6$, $H = 2$, so H should have $3 = \frac{6}{2} = \frac{|G|}{|H|}$ $|H|$ cosets. This is confirmed by an explicit computation below.

The distinct cosets of H are $\{e,(1,2)\}, \{(1,3),(1,2,3)\}$ and $\{(2,3),(1,3,2)\}.$

Example 2. Let $G = (\mathbb{Z}, +)$, $H = 3\mathbb{Z} = \{3k : k \in \mathbb{Z}\}$. Here the group operation is addition, so cosets of H are subsets of the form $g + H$ with $g \in G$.

We have $0 + H = H = \{3k : k \in \mathbb{Z}\}, 1 + H = \{1 + 3k : k \in \mathbb{Z}\}\$ and $2 + H = \{2 + 3k : k \in \mathbb{Z}\}.$ These 3 cosets cover the entire \mathbb{Z} , so there are 3 distinct cosets.

In general, for any $i \in \mathbb{Z}$ we have $i + H = \{x \in \mathbb{Z} : x \equiv i \mod 3\} = [i]_3$, the congruence class of i mod 3.