16. HOMOMORPHISMS

16.1. Basic properties and some examples.

Definition. Let G and H be groups. A map ¢ : G — H is called a

homomorphism if

p(zy) = p(x)p(y) for all z,y € G.

Example 1. Let G = (Z,+) and H = (Zp,+) for some n > 1. Define
¢:G— H by ¢(x) = [z]. Then ¢ is a homomorphism.

Since operation in both groups is addition, the equation that we need to

check in this case is p(z + y) = ¢(x) + ¢(y). Verification is given below:

p(@) +oly) =[]+ ly] = [z +y] = p(z +y)
(where equality [z] + [y] = [z + y| holds by definition of addition in Z,,).

Example 2. Let F be a field, n > 1 and integer, G = GL,(F) and H =
(F'\{0},-). Define the map ¢(A) = det(A).

In this example ¢ is a homomorphism thanks to the formula det(AB) =
det(A)det(B). Note that while this formula holds for all matrices (not
necessarily invertible ones), in the example we have to restrict ourselves to
invertible matrices since the set Mat, (F') of all n X n matrices over F' does

not form a group with respect to multiplication.

Example 3. Unlike the situation with isomorphisms, for any two groups G
and H there exists a homomorphism ¢ : G — H, called the trivial homo-
morphism. It is given by p(x) = ey for all x € G (where ey is the identity
element of H ).

The following theorem shows that in addition to preserving group opera-

tion, homomorphisms must also preserve identity element and inversion.
Theorem 16.1. Let G and H be groups and ¢ : G — H a homomorphism.
Then

(a) w(eq) = em where eq is the identity element of G and ey is the
identity element of H.
(b) (p(z))~t =@(z7t) for all x € G.

Proof. See the book. ([



Next we introduce two fundamental subgroups which can be associated
to every homomorphism.
So let G and H be groups and ¢ : G — H a homomorphism. The first

subgroup associated to ¢ is the range (image) of ¢:
Range(p) = o(G) ={h € H : h = p(g) for some g € G.}

From the definition it is clear that ¢(G) is a subset of H, but below we will
show that it is actually a subgroup.

The second subgroup if the kernel of ¢, which is defined to be the set of
all elements of G which get mapped to the identity element of H by ¢:

Ker (¢) ={9 € G:p(g9) =en}

Theorem 16.2. Let G and H be groups and ¢ : G — H a homomorphism.
Then

(a) ©(Q) is a subgroup of H

(b) Ker (¢) is a subgroup of G

Proof. (a) First note that by Theorem 16.1(a) we have ey = ¢(eq), so
en € ¢(G).

Next we check that ¢(G) is closed under group operation: take any u,v €
©(G). By definition of ¢(G) there exist x,y € G such that u = p(z) and
v = ¢(y). Hence uv = p(z)p(y) = ¢(zy) € 0(G).

Finally, we check that ¢(G) is closed under inversion: take any u € ¢(G).
Then u = ¢(z) for some 7 € G, so u™! = (p(z))~! = p(z7!) € p(G) where
the second equality holds by Theorem 16.1(b).

(b) The proof for the kernel is rather similar. Again Theorem 16.1(a)
implies that eq € Ker ().

Next take any z,y € Ker(¢). Then p(z) = ¢(y) = en, so ¢(xy) =
o(x)p(y) = ey - e = em, so xy € Ker (p) as well. Thus, Ker (¢) is closed
under group operation.

(c) Finally, for any x € Ker ¢ we have ¢(x) = e, so by Theorem 16.1(b

we have p(z7!) = (p(x))7! = e = en, so 27! € Ker (). Hence Ker (p

is closed under inversion. O

Example 4. Let G = H = (Z19,+), and define ¢ : G — H by p([z]) =
2[z] = [2z] for all x € Z.

It is straightforward to check that ¢ is a homomorphism. The range of ¢
is p(G) ={h € H : h = [2z] for some z € Z.} = {[0], [2], [4], [6], [8]} = ([2]).
The kernel of ¢ is {[z] € G : [22] = ex} = {[z] € G : [22] = [0]}. Since



[2z2] = [0] <= 2z = 10k for some k € Z <= x = 5k for some k € Z.
Thus, Ker (¢) = {[5k] : k € Z} = ([5]) = {[0], [5]}-

16.2. Some analogies with linear algebra and Range-Kernel Theo-
rem. The notions of group, homomorphism, range and kernel have direct

analogues in linear algebra:

group theory linear algebra
group vector space
homomorphism linear transformation
range of a homomorphism range of a linear transformation
kernel of a homomorphism | nullspace of a linear transformation

One of the fundamental results in linear algebra is the rank-nullity theo-

rem which asserts the following;:

Rank-Nullity Theorem. Let F be a field, let V and W be finite-dimensional
vector spaces over F', and let T : V — W be a linear transformation. Then
dim(p(T')) + dim(Nullspace(T)) = dim(V)

(The number dim(p(T)) is called the rank of T and the number dim(Nullspace(T))
is called the nullity of T, so the theorem says that the sum of the rank of T

and the nullity of T is equal to the dimension of the vector space on which

T is defined).

The following theorem, which we call the Range-Kernel Theorem, is a

group-theoretic analogue of rank-nullity theorem.

Theorem 16.3 (Range-Kernel Theorem). Let G and H be finite groups and
¢ :G — H a homomorphism. Then

|p(G)] - [Ker (p)| = |G.

In Example 4 we have |G| = 10, |¢(G)| = 5 and |Ker (¢)| = 2.
We finish this lecture with an example showing how the Range-Kernel

Theorem can be used to compute the order of some group.
Problem 16.4. Let p be a prime. Compute the order of the group |SLa(Zy)|.

We will solve this problem in two steps. First we will compute |G Lo (Z,)|
and then use the Range-Kernel Theorem to compute |SLa(Zp)|.

Step 1: By definition GLy(Z,) = {A € Maty(Z,) : det(A) # [0]}.

By a theorem from linear algebra, det Z Z # [0] <= the vectors

(a,b) and (¢, d) are not proportional (that is, are not multiples of each other).
Using this observation, we can count the number of ways to choose a 2 x 2

invertible matrix with entries in Z,.



The first row of a matrix in GLy(Z,) can be any vector of length 2 except
([0],[0]), so there are p? — 1 choices for the first row. Once the first row (a, b)
is chosen, the second row can be any vector which is not a scalar multiple
of (a,b). Since any nonzero vector with entries in Z, has precisely p distinct
multiples, there are p?> — p choices for the second row. Overall we have
(p* = 1)(p* — p) choices, so |GLa(Zy)| = (p* = 1)(p* —p) = (p—1)?p(p + 1).

Step 2: By Example 2, the map ¢ : GL2(Z,) — Z, \ {[0]} given by
©(A) = det(A), is a homomorphism.

The range of ¢ is the entire group Z, \ {[0]} since every nonzero a € Zj, is

the determinant of some 2 x 2 matrix: a = det g (1) . The kernel of ¢ is

the set {A € GLy(Z,) : det(A) = [1]} which is precisely SL2(Z,). Therefore,

by the Range-Kernel Theorem we have
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_ |GLy(Zp)l _ (p—1)%p(p+1)
|Zp \ {[0]}] p—1

S La(Zp)| = [Ker (¢)| =

=(p—Dp(p+1).



