
16. Homomorphisms

16.1. Basic properties and some examples.

Definition. Let G and H be groups. A map ϕ : G → H is called a

homomorphism if

ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ G.

Example 1. Let G = (Z,+) and H = (Zn,+) for some n > 1. Define

ϕ : G→ H by ϕ(x) = [x]. Then ϕ is a homomorphism.

Since operation in both groups is addition, the equation that we need to

check in this case is ϕ(x + y) = ϕ(x) + ϕ(y). Verification is given below:

ϕ(x) + ϕ(y) = [x] + [y] = [x + y] = ϕ(x + y)

(where equality [x] + [y] = [x + y] holds by definition of addition in Zn).

Example 2. Let F be a field, n > 1 and integer, G = GLn(F ) and H =

(F \ {0}, ·). Define the map ϕ(A) = det(A).

In this example ϕ is a homomorphism thanks to the formula det(AB) =

det(A) det(B). Note that while this formula holds for all matrices (not

necessarily invertible ones), in the example we have to restrict ourselves to

invertible matrices since the set Matn(F ) of all n× n matrices over F does

not form a group with respect to multiplication.

Example 3. Unlike the situation with isomorphisms, for any two groups G

and H there exists a homomorphism ϕ : G → H, called the trivial homo-

morphism. It is given by ϕ(x) = eH for all x ∈ G (where eH is the identity

element of H).

The following theorem shows that in addition to preserving group opera-

tion, homomorphisms must also preserve identity element and inversion.

Theorem 16.1. Let G and H be groups and ϕ : G→ H a homomorphism.

Then

(a) ϕ(eG) = eH where eG is the identity element of G and eH is the

identity element of H.

(b) (ϕ(x))−1 = ϕ(x−1) for all x ∈ G.

Proof. See the book. �
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Next we introduce two fundamental subgroups which can be associated

to every homomorphism.

So let G and H be groups and ϕ : G → H a homomorphism. The first

subgroup associated to ϕ is the range (image) of ϕ:

Range(ϕ) = ϕ(G) = {h ∈ H : h = ϕ(g) for some g ∈ G.}

From the definition it is clear that ϕ(G) is a subset of H, but below we will

show that it is actually a subgroup.

The second subgroup if the kernel of ϕ, which is defined to be the set of

all elements of G which get mapped to the identity element of H by ϕ:

Ker (ϕ) = {g ∈ G : ϕ(g) = eH}.

Theorem 16.2. Let G and H be groups and ϕ : G→ H a homomorphism.

Then

(a) ϕ(G) is a subgroup of H

(b) Ker (ϕ) is a subgroup of G

Proof. (a) First note that by Theorem 16.1(a) we have eH = ϕ(eG), so

eH ∈ ϕ(G).

Next we check that ϕ(G) is closed under group operation: take any u, v ∈
ϕ(G). By definition of ϕ(G) there exist x, y ∈ G such that u = ϕ(x) and

v = ϕ(y). Hence uv = ϕ(x)ϕ(y) = ϕ(xy) ∈ ϕ(G).

Finally, we check that ϕ(G) is closed under inversion: take any u ∈ ϕ(G).

Then u = ϕ(x) for some x ∈ G, so u−1 = (ϕ(x))−1 = ϕ(x−1) ∈ ϕ(G) where

the second equality holds by Theorem 16.1(b).

(b) The proof for the kernel is rather similar. Again Theorem 16.1(a)

implies that eG ∈ Ker (ϕ).

Next take any x, y ∈ Ker (ϕ). Then ϕ(x) = ϕ(y) = eH , so ϕ(xy) =

ϕ(x)ϕ(y) = eH · eH = eH , so xy ∈ Ker (ϕ) as well. Thus, Ker (ϕ) is closed

under group operation.

(c) Finally, for any x ∈ Kerϕ we have ϕ(x) = eH , so by Theorem 16.1(b)

we have ϕ(x−1) = (ϕ(x))−1 = e−1
H = eH , so x−1 ∈ Ker (ϕ). Hence Ker (ϕ)

is closed under inversion. �

Example 4. Let G = H = (Z10,+), and define ϕ : G → H by ϕ([x]) =

2[x] = [2x] for all x ∈ Z.

It is straightforward to check that ϕ is a homomorphism. The range of ϕ

is ϕ(G) = {h ∈ H : h = [2x] for some x ∈ Z.} = {[0], [2], [4], [6], [8]} = 〈[2]〉.
The kernel of ϕ is {[x] ∈ G : [2x] = eH} = {[x] ∈ G : [2x] = [0]}. Since
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[2x] = [0] ⇐⇒ 2x = 10k for some k ∈ Z ⇐⇒ x = 5k for some k ∈ Z.

Thus, Ker (ϕ) = {[5k] : k ∈ Z} = 〈[5]〉 = {[0], [5]}.

16.2. Some analogies with linear algebra and Range-Kernel Theo-

rem. The notions of group, homomorphism, range and kernel have direct

analogues in linear algebra:

group theory linear algebra
group vector space

homomorphism linear transformation
range of a homomorphism range of a linear transformation
kernel of a homomorphism nullspace of a linear transformation

One of the fundamental results in linear algebra is the rank-nullity theo-

rem which asserts the following:

Rank-Nullity Theorem. Let F be a field, let V and W be finite-dimensional

vector spaces over F , and let T : V →W be a linear transformation. Then

dim(ϕ(T )) + dim(Nullspace(T )) = dim(V )

(The number dim(ϕ(T )) is called the rank of T and the number dim(Nullspace(T ))

is called the nullity of T , so the theorem says that the sum of the rank of T

and the nullity of T is equal to the dimension of the vector space on which

T is defined).

The following theorem, which we call the Range-Kernel Theorem, is a

group-theoretic analogue of rank-nullity theorem.

Theorem 16.3 (Range-Kernel Theorem). Let G and H be finite groups and

ϕ : G→ H a homomorphism. Then

|ϕ(G)| · |Ker (ϕ)| = |G|.

In Example 4 we have |G| = 10, |ϕ(G)| = 5 and |Ker (ϕ)| = 2.

We finish this lecture with an example showing how the Range-Kernel

Theorem can be used to compute the order of some group.

Problem 16.4. Let p be a prime. Compute the order of the group |SL2(Zp)|.

We will solve this problem in two steps. First we will compute |GL2(Zp)|
and then use the Range-Kernel Theorem to compute |SL2(Zp)|.

Step 1: By definition GL2(Zp) = {A ∈Mat2(Zp) : det(A) 6= [0]}.

By a theorem from linear algebra, det

(
a b
c d

)
6= [0] ⇐⇒ the vectors

(a, b) and (c, d) are not proportional (that is, are not multiples of each other).

Using this observation, we can count the number of ways to choose a 2× 2

invertible matrix with entries in Zp.
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The first row of a matrix in GL2(Zp) can be any vector of length 2 except

([0], [0]), so there are p2−1 choices for the first row. Once the first row (a, b)

is chosen, the second row can be any vector which is not a scalar multiple

of (a, b). Since any nonzero vector with entries in Zp has precisely p distinct

multiples, there are p2 − p choices for the second row. Overall we have

(p2 − 1)(p2 − p) choices, so |GL2(Zp)| = (p2 − 1)(p2 − p) = (p− 1)2p(p + 1).

Step 2: By Example 2, the map ϕ : GL2(Zp) → Zp \ {[0]} given by

ϕ(A) = det(A), is a homomorphism.

The range of ϕ is the entire group Zp \{[0]} since every nonzero a ∈ Zp is

the determinant of some 2 × 2 matrix: a = det

(
a 0
0 1

)
. The kernel of ϕ is

the set {A ∈ GL2(Zp) : det(A) = [1]} which is precisely SL2(Zp). Therefore,

by the Range-Kernel Theorem we have

|SL2(Zp)| = |Ker (ϕ)| = |G|
|ϕ(G)|

=
|GL2(Zp)|
|Zp \ {[0]}|

=
(p− 1)2p(p + 1)

p− 1
= (p− 1)p(p + 1).


