16. Homomorphisms

16.1. Basic properties and some examples.

Definition. Let G and H be groups. A map $\varphi : G \to H$ is called a homomorphism if

$$
\varphi(xy) = \varphi(x)\varphi(y) \text{ for all } x, y \in G.
$$

Example 1. Let $G = (\mathbb{Z}, +)$ and $H = (\mathbb{Z}_n, +)$ for some $n > 1$. Define $\varphi: G \to H$ by $\varphi(x) = [x]$. Then φ is a homomorphism.

Since operation in both groups is addition, the equation that we need to check in this case is $\varphi(x+y) = \varphi(x) + \varphi(y)$. Verification is given below:

 $\varphi(x) + \varphi(y) = [x] + [y] = [x + y] = \varphi(x + y)$

(where equality $[x] + [y] = [x + y]$ holds by definition of addition in \mathbb{Z}_n).

Example 2. Let F be a field, $n > 1$ and integer, $G = GL_n(F)$ and $H =$ $(F \setminus \{0\},\cdot)$. Define the map $\varphi(A) = \det(A)$.

In this example φ is a homomorphism thanks to the formula $\det(AB)$ $\det(A) \det(B)$. Note that while this formula holds for all matrices (not necessarily invertible ones), in the example we have to restrict ourselves to invertible matrices since the set $Mat_n(F)$ of all $n \times n$ matrices over F does not form a group with respect to multiplication.

Example 3. Unlike the situation with isomorphisms, for any two groups G and H there exists a homomorphism $\varphi : G \to H$, called the trivial homomorphism. It is given by $\varphi(x) = e_H$ for all $x \in G$ (where e_H is the identity element of H).

The following theorem shows that in addition to preserving group operation, homomorphisms must also preserve identity element and inversion.

Theorem 16.1. Let G and H be groups and φ : $G \to H$ a homomorphism. Then

(a) $\varphi(e_G) = e_H$ where e_G is the identity element of G and e_H is the identity element of H.

1

(b) $(\varphi(x))^{-1} = \varphi(x^{-1})$ for all $x \in G$.

Proof. See the book. \Box

Next we introduce two fundamental subgroups which can be associated to every homomorphism.

So let G and H be groups and $\varphi : G \to H$ a homomorphism. The first subgroup associated to φ is the range (image) of φ :

$$
Range(\varphi) = \varphi(G) = \{h \in H : h = \varphi(g) \text{ for some } g \in G.\}
$$

From the definition it is clear that $\varphi(G)$ is a subset of H, but below we will show that it is actually a subgroup.

The second subgroup if the kernel of φ , which is defined to be the set of all elements of G which get mapped to the identity element of H by φ :

$$
Ker(\varphi) = \{ g \in G : \varphi(g) = e_H \}.
$$

Theorem 16.2. Let G and H be groups and $\varphi : G \to H$ a homomorphism. Then

- (a) $\varphi(G)$ is a subgroup of H
- (b) Ker (φ) is a subgroup of G

Proof. (a) First note that by Theorem 16.1(a) we have $e_H = \varphi(e_G)$, so $e_H \in \varphi(G)$.

Next we check that $\varphi(G)$ is closed under group operation: take any $u, v \in$ $\varphi(G)$. By definition of $\varphi(G)$ there exist $x, y \in G$ such that $u = \varphi(x)$ and $v = \varphi(y)$. Hence $uv = \varphi(x)\varphi(y) = \varphi(xy) \in \varphi(G)$.

Finally, we check that $\varphi(G)$ is closed under inversion: take any $u \in \varphi(G)$. Then $u = \varphi(x)$ for some $x \in G$, so $u^{-1} = (\varphi(x))^{-1} = \varphi(x^{-1}) \in \varphi(G)$ where the second equality holds by Theorem 16.1(b).

(b) The proof for the kernel is rather similar. Again Theorem $16.1(a)$ implies that $e_G \in \text{Ker}(\varphi)$.

Next take any $x, y \in \text{Ker}(\varphi)$. Then $\varphi(x) = \varphi(y) = e_H$, so $\varphi(xy) = e_H$ $\varphi(x)\varphi(y) = e_H \cdot e_H = e_H$, so $xy \in \text{Ker}(\varphi)$ as well. Thus, $\text{Ker}(\varphi)$ is closed under group operation.

(c) Finally, for any $x \in \text{Ker } \varphi$ we have $\varphi(x) = e_H$, so by Theorem 16.1(b) we have $\varphi(x^{-1}) = (\varphi(x))^{-1} = e_H^{-1} = e_H$, so $x^{-1} \in \text{Ker}(\varphi)$. Hence $\text{Ker}(\varphi)$ is closed under inversion.

Example 4. Let $G = H = (\mathbb{Z}_{10}, +)$, and define $\varphi : G \to H$ by $\varphi([x]) =$ $2[x] = [2x]$ for all $x \in \mathbb{Z}$.

It is straightforward to check that φ is a homomorphism. The range of φ is $\varphi(G) = \{h \in H : h = [2x] \text{ for some } x \in \mathbb{Z}.\} = \{[0], [2], [4], [6], [8]\} = \langle [2] \rangle.$ The kernel of φ is $\{[x] \in G : [2x] = e_H\} = \{[x] \in G : [2x] = [0]\}.$ Since

 $[2x] = [0] \iff 2x = 10k$ for some $k \in \mathbb{Z} \iff x = 5k$ for some $k \in \mathbb{Z}$. Thus, Ker $(\varphi) = \{ [5k] : k \in \mathbb{Z} \} = \langle [5] \rangle = \{ [0], [5] \}.$

16.2. Some analogies with linear algebra and Range-Kernel Theorem. The notions of group, homomorphism, range and kernel have direct analogues in linear algebra:

One of the fundamental results in linear algebra is the rank-nullity theorem which asserts the following:

Rank-Nullity Theorem. Let F be a field, let V and W be finite-dimensional vector spaces over F, and let $T: V \to W$ be a linear transformation. Then

 $\dim(\varphi(T)) + \dim(Nullspace(T)) = \dim(V)$

(The number dim($\varphi(T)$) is called the rank of T and the number dim(Nullspace(T)) is called the nullity of T , so the theorem says that the sum of the rank of T and the nullity of T is equal to the dimension of the vector space on which T is defined).

The following theorem, which we call the Range-Kernel Theorem, is a group-theoretic analogue of rank-nullity theorem.

Theorem 16.3 (Range-Kernel Theorem). Let G and H be finite groups and $\varphi: G \to H$ a homomorphism. Then

$$
|\varphi(G)| \cdot |\text{Ker } (\varphi)| = |G|.
$$

In Example 4 we have $|G| = 10$, $|\varphi(G)| = 5$ and $|\text{Ker}(\varphi)| = 2$.

We finish this lecture with an example showing how the Range-Kernel Theorem can be used to compute the order of some group.

Problem 16.4. Let p be a prime. Compute the order of the group $|SL_2(\mathbb{Z}_p)|$.

We will solve this problem in two steps. First we will compute $|GL_2(\mathbb{Z}_p)|$ and then use the Range-Kernel Theorem to compute $|SL_2(\mathbb{Z}_p)|$.

Step 1: By definition $GL_2(\mathbb{Z}_p) = \{A \in Mat_2(\mathbb{Z}_p) : \det(A) \neq [0]\}.$

By a theorem from linear algebra, $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \neq [0] \iff$ the vectors (a, b) and (c, d) are not proportional (that is, are not multiples of each other). Using this observation, we can count the number of ways to choose a 2×2 invertible matrix with entries in \mathbb{Z}_p .

The first row of a matrix in $GL_2(\mathbb{Z}_p)$ can be any vector of length 2 except $([0], [0])$, so there are $p^2 - 1$ choices for the first row. Once the first row (a, b) is chosen, the second row can be any vector which is not a scalar multiple of (a, b) . Since any nonzero vector with entries in \mathbb{Z}_p has precisely p distinct multiples, there are $p^2 - p$ choices for the second row. Overall we have $(p^2-1)(p^2-p)$ choices, so $|GL_2(\mathbb{Z}_p)| = (p^2-1)(p^2-p) = (p-1)^2p(p+1)$. Step 2: By Example 2, the map $\varphi : GL_2(\mathbb{Z}_p) \to \mathbb{Z}_p \setminus \{[0]\}$ given by $\varphi(A) = \det(A)$, is a homomorphism.

The range of φ is the entire group $\mathbb{Z}_p \setminus \{[0]\}$ since every nonzero $a \in \mathbb{Z}_p$ is the determinant of some 2×2 matrix: $a = \det \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$. The kernel of φ is the set $\{A \in GL_2(\mathbb{Z}_p) : \det(A) = [1]\}$ which is precisely $SL_2(\mathbb{Z}_p)$. Therefore, by the Range-Kernel Theorem we have

$$
|SL_2(\mathbb{Z}_p)| = |\text{Ker } (\varphi)| = \frac{|G|}{|\varphi(G)|}
$$

=
$$
\frac{|GL_2(\mathbb{Z}_p)|}{|\mathbb{Z}_p \setminus \{[0]\}|} = \frac{(p-1)^2 p(p+1)}{p-1} = (p-1)p(p+1).
$$