
14. The structure of finite cyclic groups. Isomorphisms

14.1. The structure of finite cyclic groups. Recall that a group G is

called cyclic if there exists x ∈ G such that 〈x〉 = G and that any such

x is called a generator of G. Theorem 13.1(2) from last class implies the

following: if G = 〈x〉 is cyclic of order n < ∞, then G = {e, x, . . . , xn−1},
elements e, x, . . . , xn−1 are distinct, and xn = e.

The simplest example of a cyclic group of order n is G = (Zn,+), in which

case x = [1] is a generator. Last time we obtained a complete characteriza-

tion of generators for the groups (Zn,+):

Proposition 13.3. Let G = (Zn,+). An element [k] ∈ G is a generator

⇐⇒ k is coprime to n.

Let us also recall Example 2 from Lecture 12 where we described (albeit

without formal proof) all subgroups of G = (Z10,+). We found that there

are exactly four subgroups: the entire group G, the trivial subgroup {e},
{[0], [2], [4], [6], [8]} = 〈[2]〉 and {[0], [5]} = 〈[5]〉. Observing that G = 〈[1]〉
and {e} = 〈[0]〉 = 〈[10]〉, we see that all subgroups of (Z10,+) are cyclic

and actually bijectively correspond to positive divisors of 10. As you may

expect, there is nothing special about 10, and the analogous result remains

valid for all n.

The following theorem collects several basic facts about finite cyclic groups;

in particular, it generalizes Proposition 14.1 and Example 2 from Lecture 12

to arbitrary cyclic groups. In the statement and proof below we use multi-

plicative notation.

Theorem 14.1 (Structure of finite cyclic groups). Let G = 〈x〉 be a finite

cyclic group of order n. The following hold:

(i) Every subgroup of G is cyclic and is equal to 〈xd〉 where d > 0 and

d | n
(ii) If d and d′ are positive divisors of n and d 6= d′, then 〈xd〉 6= 〈xd′〉
(iii) If k ∈ Z, then xk is a generator of G ⇐⇒ k and n are coprime.

(iv) For any k ∈ Z we have 〈xk〉 = 〈xd〉 where d = gcd(n, k)

(v) For any k ∈ Z we have o(xk) = n
gcd(n,k) .

Parts (i),(ii),(iii) and (v) will be included in HW#7 (with suitable hints).

Below we will prove part (iv), but first we need to establish two general

lemmas.
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Lemma 14.2. If H is a subgroup of some group G, then for any b ∈ H we

have 〈b〉 ⊆ H.

Proof. Clear since 〈b〉 = {bk : k ∈ Z} and subgroups are closed under taking

powers. �

Lemma 14.3. Let G be a group (not necessarily cyclic), x ∈ G and m,n ∈
Z. Let H be a subgroup of G. If xm ∈ H and xn ∈ H, then xgcd(n,m) ∈ H.

Proof. By GCD theorem, there exist u, v ∈ Z such that gcd(n,m) = nu+mv.

Since xn, xm ∈ H and H is closed under taking powers, we have xnu =

(xn)u ∈ H and xmv = (xm)v ∈ H. Therefore, xgcd(m,n) = xnu+mv =

xnuxmv ∈ H. �

Proof of Theorem 14.1(iv). It suffices to prove two inclusions:

(a) 〈xk〉 ⊆ 〈xd〉 (b) 〈xd〉 ⊆ 〈xk〉

We start with (a). Since d = gcd(n, k), we have k = dl for some l ∈ Z whence

xk = xdl = (xd)l ∈ 〈xd〉. Hence by Lemma 14.2 applied to H = 〈xd〉, we

have 〈xk〉 ⊆ 〈xd〉.
To prove (b) note that 〈xk〉 contains xk and also xn = e. Hence applying

Lemma 14.3 to H = 〈xk〉, we conclude that 〈xk〉 contains xgcd(n,k) = xd.

Applying Lemma 14.2 again, we get that 〈xk〉 ⊇ 〈xd〉, which proves (b). �

14.2. Isomorphisms. We start by motivating the notions of isomorphism

isomorphic groups. Informally speaking, groups G and G′ are called iso-

morphic if their multiplication tables can be obtained from each other by

relabeling of elements.

Example 1. Let G = (Z×5 , ·) and G′ = {r0, r1, r2, r3}, the rotation subgroup

of the group of isometries of a square (recall that rk denotes the counter-

clockwise rotation by 90k degrees for k = 0, 1, 2, 3).

The multiplication tables of G and G′ are given below:

· [1] [2] [3] [4]
[1] [1] [2] [3] [4]
[2] [2] [4] [1] [3]
[3] [3] [1] [4] [2]
[4] [4] [3] [2] [1]

◦ r0 r1 r2 r3
r0 r0 r1 r2 r3
r1 r1 r2 r3 r0
r2 r2 r3 r0 r1
r3 r3 r0 r1 r2

(To compute the multiplication table of G′ we simply observed that ri ◦ rj
is the rotation by 90i + 90j = 90(i + j) degrees, so ri ◦ rj = ri+j if i + j < 4

and ri ◦ rj = ri+j−4 if i+ j ≥ 4, where the latter holds since the rotation by

90 · 4 = 360 degrees is the identity map).
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Let us now relabel elements of G using formal symbols r0, r1, r2, r3 as

follows: [1] 7→ r0, [2] 7→ r1, [3] 7→ r3, [4] 7→ r2. Here is how the multiplication

table of G will look like after this relabeling:

◦ r0 r1 r3 r2
r0 r0 r1 r3 r2
r1 r1 r2 r0 r3
r3 r3 r0 r2 r1
r2 r2 r3 r1 r0

It is easy to check that this multiplication table is the same as the multi-

plication table of G′ up to swapping the third and fourth rows and the third

and fourth columns. Note that we are definitely not changing the group by

changing the order of rows and columns in the multiplication table as there

is no predetermined order in which group elements should be listed; the only

thing we require is that rows labels and column labels appear in the same

order. So, according to our informal definition, the groups G and G′ are

isomorphic.

The idea behind the notion of isomorphic groups is that all “abstract”

properties of a group (that is, properties which do not pertain to specific

nature of its elements) are completely determined by its multiplication ta-

ble. Thus, based on our informal definition, isomorphic groups should have

the same abstract properties. For instance, the property of being abelian

(=commutative) is definitely abstract as it is clearly determined by the

multiplication table: G is abelian ⇐⇒ the multiplication table of G is

symmetric with respect to the main diagonal. Below are other examples of

abstract properties, although it is not as transparent that these properties

are determined by the multiplication table:

(i) G is cyclic

(ii) G has an element of order k for some fixed k.

Our next goal is to translate the informal definition of isomorphic groups

into more formal language which will give us formal definitions of the notion

of isomorphic groups and the notion of an isomorphism. So, what does

it mean that multiplication tables of two groups G and G′ differ only by

relabeling of elements? First note that a relabeling is just a bijective map

ϕ : G → G′. In the above example the “relabeling” map ϕ was given by

ϕ([1]) = r0, ϕ([2]) = r1, ϕ([3]) = r3 and ϕ([4]) = r2.

Next, what does it mean that the relabeling ϕ transforms the multiplica-

tion table of G into the multiplication table of G′? Take any two elements

g, h ∈ G. In the initial multiplication table for G the element located at the
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intersection of g-row and h-column is gh. After the relabeling, the element

located at the intersection of ϕ(g)-row and ϕ(h)-column is ϕ(gh). At the

same time, in the multiplication table for G′, the element located at the

intersection of ϕ(g)-row and ϕ(h)-column is ϕ(g)ϕ(h). Thus, the multipli-

cation table for G′ coincides with the relabeled multiplication table for G

⇐⇒ ϕ(gh) = ϕ(g)ϕ(h) for all g, h ∈ G.

The above analysis motivates the following formal definition:

Definition. Let G and G′ be groups.

(a) A map ϕ : G→ G′ is called an isomorphism if

(i) ϕ is bijective

(ii) ϕ preserves group operation: ϕ(gh) = ϕ(g)ϕ(h) for all g, h ∈ G

(b) We say that G is isomorphic to G′ if there exists an isomorphism

ϕ : G→ G′.

Note that in the equation in (a)(ii), the product gh on the left-hand side

is a product in G, while the product ϕ(g)ϕ(h) on the right-hand side is a

product in G′.


