
1. Introduction to commutative rings and fields

Very informally speaking, a commutative ring is a set in which we can

add, subtract and multiply elements so that the “usual laws” hold. A field

is a commutative ring in which we can also perform division (again satisfying

the “usual laws”).

Based on this description, we would expect that the familiar ‘number sys-

tems’ Z (integers), Q (rational numbers), R (real numbers) and C (complex

numbers) are all commutative rings, and among those Q, R and C are fields,

while Z is not a field (we cannot divide in Z, as the quotient of two integers is

not necessarily an integer, so we cannot perform division within the original

set).

In order to justify the above claim, we need to give formal definitions of

commutative rings and fields, for which we need to say what we mean by

the “usual laws” of arithmetic operations. It is impossible to write down all

possible valid laws, but there is also no need to do that. What we want to

do is to declare the list of basic laws called axioms, so that all other laws

would follow from them.

1.1. Axioms for arithmetic operations. Below R stands for one of the

four sets Z, Q, R and C. We start with axioms of addition:

(A0) R is closed under +, that is, if x, y ∈ R, then x + y ∈ R

(A1) + is commutative, that is, x + y = y + x for all x, y ∈ R

(A2) + is associative, that is, x + (y + z) = (x + y) + z for all x, y, z ∈ R

(A3) There exists 0 ∈ R such that x + 0 = 0 + x = x for all x ∈ R

(A4) For any x ∈ R there exists −x in R such that x+(−x) = (−x)+x =

0. Such an element −x is called an additive inverse of x. Thus, (A4)

says that every x ∈ R has an additive inverse in R.

Remark: It is easy to deduce from these axioms that for every x ∈ R

there is unique element −x satisfying (A4). This ensures that notation −x
is unambiguous (−x is uniquely determined by x) and also that we can talk

about ‘THE additive inverse’.

Once we introduced additive inverses, we can define subtraction in terms

of addition by setting

x− y = x + (−y) for all x, y ∈ R.

Next we state axioms of multiplication (denoted by ·):
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(M0) R is closed under ·, that is, if x, y ∈ R, then x · y ∈ R

(M1) · is commutative, that is, x · y = y · x for all x, y ∈ R

(M2) · is associative, that is, x · (y · z) = (x · y) · z for all x, y, z ∈ R

(M3) There exists 1 ∈ R (often called the unity of R) such that x · 1 =

1 · x = x for all x ∈ R

(M4) For every NONZERO x ∈ R there exists x−1 in R such that x·x−1 =

x−1·x = 1. Such an element x−1 is called the multiplicative inverse of

x (as with additive inverses, one can show that x−1 is unique). Thus,

(M4) says that every nonzero x ∈ R has a multiplicative inverse in

R.

Note that (M0)-(M3) hold in all the examples we considered so far, while

(M4) holds in Q, R and C, but does not hold in Z (for instance 2 ∈ Z, but

2−1 6∈ Z).

Finally, there are two axioms, relating addition and multiplication, called

the distributivity laws:

(D1) (x + y) · z = x · z + y · z for all x, y, z ∈ R

(D2) x · (y + z) = x · y + x · z for all x, y, z ∈ R.

Remark: Of course, if (M1) holds in R, then (D1) and (D2) are equivalent

(so we only need to require one of these axioms). The reason we list both

(D1) and (D2) explicitly is that there are important algebraic structures

where (M1) does not hold, but both (D1) and (D2) do hold.

Definition. Let R be a set with two operations + and ·. Then

(i) R is called a ring if it satisfies axioms (A0)-(A4), (M0),(M2) and

(D1)-(D2)

(i) R is called a commutative ring if it satisfies axioms (A0)-(A4), (M0)-

(M2) and and (D1)-(D2) (thus, the word ‘commutative’ refers to

commutativity of multiplication)

(iii) R is called a commutative ring with 1 if it satisfies axioms (A0)-(A4),

(M0)-(M3) and (D1)-(D2)

(iv) R is called a field if it satisfies all of the 12 axioms above and in

addition 0 6= 1.

Thus, according to our definition, Q,R and C are indeed fields, and Z
is a commutative ring with 1 which is not a field. A simple example of a

commutative ring without 1 is 2Z (even integers). Finally, an example of a

non-commutative ring is Mat2(R), two by two matrices with real entries.
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The above definition is completely formal, provided one interprets cor-

rectly the word ‘operation’ in it. Here we are talking about binary operations

on a set, which can be defined as follows.

Definition. Let X be an arbitrary set. A binary operation on X is a rule

(denoted by some symbol, say, ∗) which to every ordered pair (x, y) of ele-

ments of X associates another element of X denoted by x ∗ y.

The main point of this definition is that for every x, y ∈ X, the element

x ∗ y should again lie in X and should be uniquely determined by x and y.

A more formal way to define the notion of a binary operation is as follows:

Definition. A binary operation ∗ on X is a function ∗ : X ×X → X where

X ×X = {(x, y) : x, y ∈ X} is the set of ordered pairs of elements of X.

Remark: Note that by saying that + and · are binary operations on R

we already require that axioms (A0) and (M0) must hold. Thus, formally

those axioms do not have to appear on the list. It is, however, a good idea

to keep them, as if we want to check that some set R is a ring with respect

to some operations + and ·, then we do have to check those properties.

We now give a few examples showing how to derive additional properties

of arithmetic operations in rings from axioms. In all example below R

denotes a commutative ring.

Example 1.1. Prove that a + (b + c) = c + (b + a) for all a, b, c ∈ R.

Proof:

a + (b + c) = a + (c + b) by (A1)
= (c + b) + a by applying (A1) with x = a and y = c + b
= c + (b + a) by (A2).

Example 1.2. (Cancellation law for addition) Suppose that x + z = y + z

for some x, y, z ∈ R. Prove that x = y.

Proof: Here we are given a different type of problem – we have to deduce

one equality from another one, so we have to make sure that we do things in

correct order. We have to start with what we are given (x + z = y + z) and

then use axioms to deduce what we want (x = y). It may be tempting to

do things in reverse order (start with x = y and deduce that x+ z = y + z),

but that would not give a valid proof.

Intuitively, it is clear what we should do: start with x + z = y + z and

then subtract z from both sides. However, since our axioms do not explicitly
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use subtraction, we have to proceed in several steps.

x + z = y + z This is what we are given
(x + z) + (−z) = (y + z) + (−z) Add −z to both sides on the right
x + (z + (−z)) = y + (z + (−z)) Use (A2) on both sides

x + 0 = y + 0 Use (A4) on both sides
x = y Use (A3) on both sides

Remark: Note that in the first step we use the following property without

justification: if we have some equality, then we can add the same element

to both sides of that equality (that is, if a = b, then a + c = b + c). Such

a transition is always valid, but it is important to understand why it is

valid. In order to justify it, we need to go back to the definition of a binary

operation. Since + is a binary operation, the element a + c is completely

determined by the ordered pair (a, c); at this point, it may be useful to

write +(a, c) (thinking of + as a function) instead of a+ c. Since a = b, the

ordered pairs (a, c) and (b, c) are the same (since they have the same first

component and the same second component). Hence the result of applying

the binary operation + should by the same: +(a, c) = +(b, c) or, in usual

notations, a + c = b + c.

Example 1.3. Prove that x · 0 = 0 for all x ∈ R.

Proof: Here we start with a trick: x · 0 = x · (0 + 0) = (x · 0) + (x · 0) using

(A3) and (D). On the other hand, again by (A3), we have x · 0 = 0 + (x · 0).

Combining these two equalities, we get (x · 0) + (x · 0) = x · 0 = 0 + (x · 0),

so applying the cancellation law (the result of the previous exercise), we

deduce that x · 0 = 0.

Example 1.4. Prove that (−1) · x = −x for all x ∈ R.

We will start by giving a wrong proof presented below:

(−1) · x = −x
((−1) · x) + x = (−x) + x add x to both sides

(−1 · x) + 1 · x = 0 use (M3) on the left
((−1) + 1) · x = 0 use (D) on the left

0 · x = 0 use (A4) on the left

The last line is true by Example 1.3, and we would like to say that we are

done. This argument is wrong because we did steps in the wrong order – we

started with what we had to prove and deduced something which we already

know is true. However, this does not mean that the above computation is

useless, for if we are able to reverse all the steps, we will get a legitimate

proof.

A quick glance through the argument shows that all the steps can indeed

be reversed. In fact, for most steps even justification remains the same -
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the only exception is that instead of adding x to both sides in the first step,

we will be using cancellation law (in what will now be the last step). Thus,

reversing the steps, we obtain what is now a legitimate proof.

0 · x = 0 true by the previous example
⇓

((−1) + 1) · x = 0 use (A4) on the left
⇓

((−1) · x) + 1 · x = 0 use (D) on the left
⇓

((−1) · x) + x = (−x) + x use (M3) on the left
⇓

(−1) · x = −x use cancellation law


