Homework #9. Due on Thursday, April 2nd Reading:

1. For this assignment: Section 4.1 and class notes (Lectures 17-18).

2. For Tuesday's class: Section 4.4 (cosets)

3. For Thursday's class: Section 4.5 (normal subgroups) and Theorem 4.26 on page 240 (Theorem 4.24 on page 232 if you are using 7th edition).

Problems:

Problem 1: 4.1.1(f) and 4.1.2(f) (either edition).

Problem 2: Two elements f and g of S_n are said to have the same **cycle type** if their disjoint cycle forms contain the same number of cycles of each length. For instance, elements (1, 5, 6)(2, 3)(4, 7) and (1, 7, 8)(4, 5)(3, 6) of S_8 have the same cycle type. Show that elements of S_6 have 11 distinct cycle types. For each cycle type list one element of that type.

Problem 3: (a) Use the result of Problem 2 to determine possible orders of elements of S_6 . Recall that if $f \in S_n$ is written as a product of disjoint cycles $f_1 f_2 \ldots f_r$ where f_1 has length k_1, \ldots, f_r has length k_r , then the order of f is the least common multiple of k_1, k_2, \ldots, k_r .

(b) Find the smallest $n \in \mathbb{N}$ for which S_n has an element of order 15 and prove your answer.

Problem 4: (a) Let $f, g \in S_n$ be two transpositions, that is, f = (i, j) and g = (k, l) for some i, j, k, l. What are the possible orders of the product fg? Note: By definition, a transposition is just a cycle of length 2. Hint: Consider three cases depending on the size of the set $\{i, j\} \cap \{k, l\}$ (note that $\{i, j\} \cap \{k, l\}$ is empty if and only f and g are disjoint cycles).

(b) (optional) Answer the same question when f is a transposition and g is a cycle of length 3.

Problem 5: Let G be a group, and let H and K be subgroups of G. Suppose that

(i) H is contained in K,

- (ii) $K \neq H$ and $K \neq G$
- (iii) |G| = 24 and |H| = 6.

Determine |K|. State your proof clearly. **Hint:** Draw a picture.

Problem 6: Let p and q be distinct primes, and let G be a group of order pq. Prove that one of the following two cases occurs:

(i) G is isomorphic to \mathbb{Z}_{pq} .

(ii) for every $x \in G$ either $x^p = e$ or $x^q = e$.

Problem 7: Use Lagrange theorem to prove Fermat's little theorem: if p is prime, then $n^p \equiv n \mod p$ for any $n \in \mathbb{Z}$. **Hint:** Apply Corollary 18.1(B) to the group $\mathbb{Z}_p^{\times} = (\mathbb{Z}_p \setminus \{[0]\}, \cdot).$

Bonus Problem: Describe all subgroups of the octic group D_8 . **Hint:** First determine possible orders of subgroups. To describe all subgroups use the following fact proved in class: any group of order 4 is isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ (in particular, this implies that any group of order 4 is abelian). There will be a total of 10 subgroups (including the entire D_8 and the trivial subgroup).

 $\mathbf{2}$