
Homework #6. Due Thursday, October 14th

Reading:

For this homework assignment: 3.3 and 3.4 (up to Theorem 3.24).

For next week’s classes: 3.5, 3.4 (starting with Theorem 3.24) and 3.6. Also

read the note on functions (see the webpage).

To hand in:

Problem 1: A group G is called abelian (=commutative) if xy = yx for

ALL x, y ∈ G.

(a) Prove that a group G is abelian ⇐⇒ (xy)2 = x2y2 for all x, y ∈ G.

(b) Let G be a group such that x−1 = x for all x ∈ G. Prove that G

is abelian. Note: This can be deduced from (a) or proved indepen-

dently.

Warning: To prove that a group G is abelian, you need to show that

xy = yx for ALL x, y ∈ G (you cannot pick x and y that you like).

Problem 2: Let G be a group and let H = {x ∈ G : x2 = e}, the set of all

elements of G whose square is the identity element.

(a) Assume that G is abelian. Prove that H is a subgroup of G. Clearly

indicate where you use that G is abelian.

(b) Give an example of a non-abelian group G such that H is not a

subgroup (and prove your answer). Hint: you have seen such a

group in class.

Problem 3: Let G be a group and H and K subgroups of G.

(a) Prove that the intersection H ∩K is a subgroup of G.

(b) Prove that the union H ∪K is a subgroup of G if and only if H ⊆ K

or K ⊆ H. Hint: The backward (“⇐”) direction is easy. For the

forward (“⇒”) direction do a proof by contrapositive: assume that

K does not contain H and H does not contain K. This means that

there exist x, y ∈ G such that x ∈ H, but x 6∈ K, and y ∈ K, but

y 6∈ H. Now prove by contradiction that xy does not belong to H

or K. Why does this finish the proof?

(c) (practice) Let A be some set (possibly infinite), and let {Hα}α∈A be

any collection of subgroups of G indexed by elements of A. Prove

that the intersection of all these subgroups ∩α∈AHα is a subgroup

of G.
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Problem 4:

(a) Recall that if G is a group and a ∈ G, the centralizer C(a) is the set

of all elements of G which commute with a, that is,

C(a) = {x ∈ G : xa = ax}.

In Lecture 12 we started proving that C(a) is a subgroup of G. Finish

that proof (it remains to show that C(a) is closed under inversion).

(b) Given a group G, let Z(G) be the set of all x ∈ G which commute

with every element of G, that is,

Z(G) = {x ∈ G : xg = gx for all g ∈ G.}

The set Z(G) is called the center of G. Prove that Z(G) is a subgroup

of G without doing any computations. Hint: use Problem 3.

Problem 5: Let F be a field and let n ≥ 2 be an integer. Recall that

GLn(F ) is the group of all invertible n × n matrices with entries in F

(with respect to multiplication). Also recall that a matrix A with entries in

F is invertible ⇐⇒ det(A) 6= 0.

(a) (practice) It is a well-known fact that if A and B are any n× n ma-

trices over some commutative ring, then det(AB) = det(A) det(B).

Verify this formula (by direct computation) for n = 2.

(b) Let SL2(F ) =

{(
a b
c d

)
: a, b, c, d ∈ F and ad− bc = 1

}
, that is,

SL2(F ) is the set of all 2× 2 matrices with entries in F and deter-

minant equal to 1. Use (a) to prove that SL2(F ) is a subgroup of

GL2(F ).

Problem 6:

(a) Problem 3.3.15(a)(b), page 168. Note: GL(2,R) is the same as

GL2(R).

– 3.3.15(a) Prove that

{(
a b
−b a

)
: a, b ∈ R, a2 + b2 6= 0

}
is a sub-

group of GL2(R)

– 3.3.15(b) Prove that

{(
a b
0 1

)
: a, b ∈ R, a 6= 0

}
is a subgroup

of GL2(R)

(b) Solve Problem 3.3.19(b) without any computations using Problems

3(a), 5(b) and 6(a) in this homework. Hint: What is the meaning

of the expression a2 + b2 ib 3.3.15(a) and 3.3.19(b)?
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– 3.3.19(b) Prove that

{(
a b
−b a

)
: a, b ∈ R, a2 + b2 = 1

}
is a sub-

group of SL2(R)

(c) (bonus) Do you see a connection between subgroups in 3.3.15(a) and

3.3.19(b) and complex numbers? If yes, explain.

Problem 7:

(a) Let A be a set, and let S(A) be the set of all bijective functions

f : A→ A. Recall that S(A) is a group with respect to composition

(we briefly discussed this group in Lecture 10). Fix a ∈ A, and let

Ha = {f ∈ S(A) : f(a) = a}, that is, Ha is the set of all functions

from S(A) which send a to a. Prove that Ha is a subgroup of S(A).

(b) Now let A = {1, 2, 3, 4} and a = 3. Describe explicitly all elements

of the subgroup H3 = Ha (you can use “two line notation” to list

elements of H3).

Problem 8: Recall that for a ring R with 1 we denote by R× the group

of invertible elements of R with respect to multiplication. For each of the

following groups G, determine whether it is cyclic or not. If it is cyclic, find

ALL generators (note: to prove that a group is cyclic it suffices to find one

generator).

(i) G = Z×7 , (ii) G = Z×9 , (iii) G = Z×12.

Problem 9 (practice): Let G = (Z,+), integers with respect to addition,

and let H be a subgroup of G. Prove that H = nZ for some n ∈ Z (recall

that nZ = {0,±n,±2n, . . .} is the set of all integer multiples of n). The

sketch of proof is given below.

Since H is a subgroup, H must contain the identity element (0 in this case).

If H consists of 0 alone, then H = 0 · Z, and the assertion of the theorem

holds. Otherwise, we can assume that there exists a nonzero element z ∈ H.

(a) Prove that H contains at least one positive integer y. Hint: if z > 0,

we can set y = z; if z < 0, do something else.

(b) Prove that H contains mZ for any m ∈ H.

(c) Let n be the smallest positive element of H (why does such n exist?).

Prove that H = nZ. Hint: assume not. Since H contains nZ by part

(b), the only way H may not equal nZ is if there exists x ∈ H such

that x 6∈ nZ. Use division with remainder to obtain contradiction

with the choice of n.
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Problem 10 (practice):

(a) Prove the formula for the inverse of a product of several elements in

a group: if G is a group and g1, g2, . . . , gk ∈ G, then

(g1g2 . . . gk)
−1 = g−1k g−1k−1 . . . g

−1
1 . (∗ ∗ ∗)

Hint: You can imitate the proof of the formula (xy)−1 = y−1x−1

established in Theorem 3.4(e), or you can prove (***) by induction

on k (the base case k = 2 is precisely the statement of Theorem

3.4(e)). If you are not sure how to set up the induction step, look

at how we proved the generalized Euclid’s lemma using the regular

Euclid’s lemma (done some time in week 2 or 3).

(b) Now let G be a group and a, b some elements of G. Define 〈a, b〉 to

be the smallest subgroup of G which contains both a and b. Prove

that 〈a, b〉 is equal to the set

S = {g ∈ G : g = g1g2 . . . gk for some k ≥ 1 where each gi is equal to a, b, a−1 or b−1.}

Note that your proof must consist of two parts

(i) Show that if H is any subgroup of G containing a and b, then

H must contain all elements of the set S (this is very easy)

(ii) The set S is a subgroup. This is where part (a) of this problem

becomes relevant.


