
Homework #2. Due Thursday, January 29th, in class

Reading:

1. For this assignment: Section 2.2, 2.3 and parts of 2.4 (greatest common

divisor) + class notes (Lectures 3-4).

2. For next week’s classes: the rest of 2.4 (primes and factorization) and 2.5

(start).

Problems:

Problem 1: Consider the following “proof” by induction: For each n ∈ N
let P (n) be the statement

n∑
i=0

2i = 2n+1. (∗ ∗ ∗)

Claim: P (n) is true for all n ∈ N.

Proof: “P (n− 1)⇒ P (n).” Assume that P (n− 1) is true for some n ∈ N.

Then
∑n−1

i=0 2i = 2n. Adding 2n to both sides, we get
∑n−1

i=0 2i +2n = 2n +2n,

whence
∑n

i=02
i = 2n+1, which is precisely P (n). Thus, P (n) is true.

By the principle of mathematical induction, P (n) is true for all n. �

(a) Show that the statement P (n) is false (it is actually false for any n).

(b) Explain why the above “proof” does not contradict the principle of

mathematical induction, that is, find a mistake in the above “proof”

(Hint: the mistake is in the general logic).

Problem 2: Recall that in Lecture 3 we proved that for every n ∈ N there

exist an, bn ∈ Z such that (1 +
√

2)n = an + bn
√

2. Moreover, we showed

that such an and bn satisfy the following recursive relations: a1 = b1 = 1

and an+1 = an + 2bn, bn+1 = an + bn for all n ∈ N.

(a) Use the above recursive formulas and mathematical induction to

prove that a2n − 2b2n = (−1)n for all n ∈ N.

(b) Prove that for all n ∈ N there exist cn, dn ∈ Z such that (1+
√

3)n =

cn + dn
√

3.

(c) (bonus) Find a simple formula relating cn and dn (similar to the one

in (a)) and prove it.

Problem 3: Let a, b, c ∈ Z such that c | a and c | b. Prove directly from

definition of divisibility that c | (ma + nb) for any m,n ∈ Z (do not refer to

any divisibility properties proved in class).
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Problem 4: Let a, b, c ∈ Z such that c | ab. Is it always true that c | a
or c | b? If the statement is true for all possible values of a, b, c, prove it;

otherwise give a counterexample.

Problem 5: Let a = 382 and b = 26. Use Euclidean algorithm to compute

gcd(a, b) and find u, v ∈ Z such that au + bv = gcd(a, b).

Problem 6: Prove the key lemma, justifying the Euclidean algorithm:

Lemma: Let a, b ∈ Z with b > 0. Divide a by b with remainder: a = bq+r.

Then gcd(a, b) = gcd(b, r).

Hint: Show that the pairs {a, b} and {b, r} have the same set of common

divisors, that is,

(i) if c | a and c | b, then c | r (and so c divides both b and r)

(ii) if c | b and c | r, then c | a (and so c divides both a and b).

Problem 7: Let a, b ∈ Z, not both 0, let d = gcd(a, b), and let

S = {x ∈ Z : x = am + bn for some m,n ∈ Z}.

By GCD Theorem, d is the smallest positive element of S, and a natural

problem is to describe all elements of S.

(a) Prove that if k is any element of S, then d | k. Hint: Problem 3.

(b) Prove that if k ∈ Z and d | k, then k ∈ S. Hint: Use the first of

part of GCD Theorem (as stated in class).

(c) Deduce from (a) and (b) that elements of S are precisely integer

multiples of d.

Problem 8: Given n, k ∈ Z with 0 ≤ k ≤ n, define the binomial coefficient(
n
k

)
by (

n

k

)
=

n!

k!(n− k)!

(recall that 0! = 1).

(a) Prove that
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
for any 1 ≤ k < n (direct computa-

tion).

(b) Now prove the binomial theorem: for every a, b ∈ R and n ∈ N,

(a+b)n =
n∑

k=0

(
n

k

)
an−kbk =

(
n

0

)
an+

(
n

1

)
an−1b+. . .+

(
n

n− 1

)
abn−1+

(
n

n

)
bn.

Hint: Use induction on n. For the induction step write

(a + b)n = (a + b)n−1 · (a + b) and use part (a).


