Homework #2. Due Thursday, January 29th, in class Reading:

1. For this assignment: Section 2.2, 2.3 and parts of 2.4 (greatest common divisor) + class notes (Lectures 3-4).

2. For next week's classes: the rest of 2.4 (primes and factorization) and 2.5 (start).

Problems:

Problem 1: Consider the following "proof" by induction: For each $n \in \mathbb{N}$ let P(n) be the statement

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1}.$$
 (***)

Claim: P(n) is true for all $n \in \mathbb{N}$.

Proof: " $P(n-1) \Rightarrow P(n)$." Assume that P(n-1) is true for some $n \in \mathbb{N}$. Then $\sum_{i=0}^{n-1} 2^i = 2^n$. Adding 2^n to both sides, we get $\sum_{i=0}^{n-1} 2^i + 2^n = 2^n + 2^n$, whence $\sum_{i=0}^{n} 2^i = 2^{n+1}$, which is precisely P(n). Thus, P(n) is true.

By the principle of mathematical induction, P(n) is true for all n. \Box

- (a) Show that the statement P(n) is false (it is actually false for any n).
- (b) Explain why the above "proof" does not contradict the principle of mathematical induction, that is, find a mistake in the above "proof" (Hint: the mistake is in the general logic).

Problem 2: Recall that in Lecture 3 we proved that for every $n \in \mathbb{N}$ there exist $a_n, b_n \in \mathbb{Z}$ such that $(1 + \sqrt{2})^n = a_n + b_n \sqrt{2}$. Moreover, we showed that such a_n and b_n satisfy the following recursive relations: $a_1 = b_1 = 1$ and $a_{n+1} = a_n + 2b_n$, $b_{n+1} = a_n + b_n$ for all $n \in \mathbb{N}$.

- (a) Use the above recursive formulas and mathematical induction to prove that $a_n^2 2b_n^2 = (-1)^n$ for all $n \in \mathbb{N}$.
- (b) Prove that for all $n \in \mathbb{N}$ there exist $c_n, d_n \in \mathbb{Z}$ such that $(1+\sqrt{3})^n = c_n + d_n\sqrt{3}$.
- (c) (bonus) Find a simple formula relating c_n and d_n (similar to the one in (a)) and prove it.

Problem 3: Let $a, b, c \in \mathbb{Z}$ such that $c \mid a$ and $c \mid b$. Prove directly from definition of divisibility that $c \mid (ma + nb)$ for any $m, n \in \mathbb{Z}$ (do not refer to any divisibility properties proved in class).

Problem 4: Let $a, b, c \in \mathbb{Z}$ such that $c \mid ab$. Is it always true that $c \mid a$ or $c \mid b$? If the statement is true for all possible values of a, b, c, prove it; otherwise give a counterexample.

Problem 5: Let a = 382 and b = 26. Use Euclidean algorithm to compute gcd(a, b) and find $u, v \in \mathbb{Z}$ such that au + bv = gcd(a, b).

Problem 6: Prove the key lemma, justifying the Euclidean algorithm:

Lemma: Let $a, b \in \mathbb{Z}$ with b > 0. Divide a by b with remainder: a = bq + r. Then gcd(a, b) = gcd(b, r).

Hint: Show that the pairs $\{a, b\}$ and $\{b, r\}$ have the same set of common divisors, that is,

- (i) if $c \mid a$ and $c \mid b$, then $c \mid r$ (and so c divides both b and r)
- (ii) if $c \mid b$ and $c \mid r$, then $c \mid a$ (and so c divides both a and b).

Problem 7: Let $a, b \in \mathbb{Z}$, not both 0, let d = gcd(a, b), and let

$$S = \{ x \in \mathbb{Z} : x = am + bn \text{ for some } m, n \in \mathbb{Z} \}.$$

By GCD Theorem, d is the smallest positive element of S, and a natural problem is to describe all elements of S.

- (a) Prove that if k is any element of S, then $d \mid k$. Hint: Problem 3.
- (b) Prove that if $k \in \mathbb{Z}$ and $d \mid k$, then $k \in S$. **Hint:** Use the first of part of GCD Theorem (as stated in class).
- (c) Deduce from (a) and (b) that elements of S are precisely integer multiples of d.

Problem 8: Given $n, k \in \mathbb{Z}$ with $0 \le k \le n$, define the binomial coefficient $\binom{n}{k}$ by

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

(recall that 0! = 1).

- (a) Prove that $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$ for any $1 \le k < n$ (direct computation).
- (b) Now prove the binomial theorem: for every $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k} = \binom{n}{0} a^{n} + \binom{n}{1} a^{n-1} b + \ldots + \binom{n}{n-1} a b^{n-1} + \binom{n}{n} b^{n}.$$

Hint: Use induction on *n*. For the induction step write $(a+b)^n = (a+b)^{n-1} \cdot (a+b)$ and use part (a).