Homework #12. Not due

For this assignment: Sections 5.1, 6.1, 6.2 and class notes (Lectures 24-26)

Problems:

Note that problems 3 and 6(b) were done in class on Thu, April 23rd.

Problem 1: Let $\mathbb{Z}[i]$ be the set of all complex numbers of the form a + bi with $a, b \in \mathbb{Z}$. Prove that $\mathbb{Z}[i]$ is a subring of \mathbb{C} . This ring is called **Gaussian integers.**

Problem 2: Let $S = \{a + b\sqrt{2} + c\sqrt{3} : a, b, c \in \mathbb{Z}\}.$

- (a) Let T be a subring of \mathbb{R} which contains 1 and $\sqrt{2}$ and $\sqrt{3}$. Prove that T contains all elements of S.
- (b) Prove that S is NOT a subring of \mathbb{R} .
- (c) Find the minimal subring of \mathbb{R} which contains all elements of S. First guess what the answer should be, call your answer S_1 (step 1), then prove that S_1 is a subring (step 2), and finally prove that S_1 is the minimal subring containg S (step 3).

Problem 3: Let R be a commutative ring with 1 and I an ideal of R.

- (a) Suppose that $1 \in I$. Prove that I = R.
- (b) Suppose that R is a field. Prove that I = R or $I = \{0\}$. Hint: Reduce (b) to (a).

Problem 4: Let R be a commutative ring with 1.

- (a) Fix $a \in R$, and let I = aR, the principal ideal of R generated by a. Prove that I is the minimal ideal of R containing a.
- (b) Now fix two elements $a, b \in R$, and let

 $I = aR + bR = \{x \in R : x = ar + bs \text{ for some } r, s \in R\}.$

Prove that I is the minimal ideal of R containing a and b.

Hint: First prove that I is an ideal of R containing a and b and then show that if J is any ideal of R containing a and b, then J contains I.

Problem 5: Let $a, b \in \mathbb{Z}$, and let I be the minimal ideal of \mathbb{Z} containing both a and b. Use Problem 4 and one of the problems from Homework#2 to prove that $I = d\mathbb{Z}$ where d = gcd(a, b). State your argument clearly.

Remark: If a_1, \ldots, a_k are elements of a ring R, the minimal ideal of R containing all these elements is commonly denoted by (a_1, \ldots, a_k) . With this notation, the result of Problem 5 maybe restated as (a, b) = (d) where d = gcd(a, b). This explains why the greatest common divisor of a and b is often denoted simply by (a, b).

Problem 6: Let $R = \mathbb{Z}[x]$ (polynomials with coefficients in \mathbb{Z}), and let

 $I = \{a_0 + a_1 x + \ldots + a_n x^n : \text{ each } a_i \in \mathbb{Z} \text{ and } a_0 \text{ is even. } \}$

- (a) Use Problem 2 to prove that I is the minimal ideal of R containing 2 and x.
- (b) Prove that I is a non-principal ideal, that is, $I \neq fR$ for any $f \in R$. Hint: Consider three cases.
 - (i) f is a non-constant polynomial
 - (ii) f is an even constant
 - (iii) f is an odd constant.

Problem 7: Consider the quotient group \mathbb{Q}/\mathbb{Z} . Recall that the group operation on \mathbb{Q}/\mathbb{Z} is denoted by + and defined by

$$(a + \mathbb{Z}) + (b + \mathbb{Z}) = (a + b) + \mathbb{Z}.$$

Suppose now we want to turn \mathbb{Q}/\mathbb{Z} into a ring and define multiplication on \mathbb{Q}/\mathbb{Z} by

$$(a + \mathbb{Z}) \cdot (b + \mathbb{Z}) = ab + \mathbb{Z}.$$

Show that such multiplication will NOT be well defined.