
27. Polynomials rings

27.1. Definition and basic properties. Let R be a commutative ring

with 1. We want to define a new commutative ring with 1 denoted by R[x]

and called the ring of polynomials over R. It will contain R as a subring

with 1.

Let us start with the set R̂[x] of formal expressions of the form
∑n

i=0 aix
i

where n ∈ Z≥0 and each ai ∈ R. We cannot just define R[x] to be the set of

such formal expressions since, for instance, 1·x0 and 1·x0+0·x1 are formally

distinct expressions, but we want to treat them as the same polynomial.

One way to resolve this issue is as follows. Let us introduce a relation ∼
on R̂[x] by

∑n
i=0 aix

i ∼
∑m

i=0 bix
i if either

(i) n ≥ m, ai = bi for all 0 ≤ i ≤ m and ai = 0 for all m < i ≤ n or

(ii) m ≥ n, ai = bi for all 0 ≤ i ≤ n and bi = 0 for all n < i ≤ m.

It is not difficult to check that ∼ is an equivalence relation. We define R[x]

to be the set of equivalence classes with respect to this relation.

Note that in practice we will never write polynomials using the general

notation for equivalence classes (with [f ] denoting the equivalence class of f)

as this would make the formulas unreadable. Instead we will, as usual, still

treat polynomials as expressions of the form
∑n

i=0 aix
i, but keep in mind

that adding or removing any terms of the form 0 · xk does not change the

polynomial.

The polynomial 0 ·x0 (simply written as 0 from now on) is called the zero

polynomial.

Any nonzero polynomial f ∈ R[x] can be uniquely written in the form

f =
∑n

i=0 aix
i where an ̸= 0. In this case, we define deg(f) = n, called the

degree of f . The monomial anx
n is called the leading term of f and an is

called the leading coefficient of f .

We also define deg(0) = −∞. The leading term or the leading coefficient

of the zero polynomial are undefined.

Addition and mupliplication of polynomials are given by the formulas

(

n∑
i=0

aix
i) + (

n∑
i=0

bix
i) =

n∑
i=0

(ai + bi)x
i and

(

n∑
i=0

aix
i) · (

m∑
i=0

bix
i) =

n+m∑
k=0

ckx
k where ck =

∑
i+j=k

aibj .
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Note that we did not lose any generality by using the same upper bound for

summation (n) for both polynomials in the formula for addition since we

can always add extra terms with the 0 coefficient. We could have done the

same for multiplication, but that would not make the formula any simpler.

It is straighforward (but rather tedious) to show that R[x] with the op-

erations defined above is a commutative ring with 1.

The following basic properties of the degree function are immediate from

the definition:

Lemma 27.1. Let f, g ∈ R[x]. Then

(a) deg(f + g) ≤ max{deg(f), deg(g)}
(b) deg(fg) ≤ deg(f) + deg(g).

Note that we do not have to exclude the zero polynomial in Lemma 27.1

if adopt the usual convention that −∞ ≤ x for all x ∈ R and −∞+x = −∞
for all x ∈ R ∪ {−∞}.

The following additional properties of degree were established in HW#5:

Lemma 27.2. Let f, g ∈ R[x]. The following hold:

(a) deg(f + g) = max{deg(f), deg(g)} whenever deg(f) ̸= deg(g)

(b) deg(fg) = deg(f) + deg(g) whenever R is a domain (has no zero

divisors); in particular, this is true if R is a field.

27.2. Polynomials with coefficients in a field. Let us now restrict our

attention to polynomial rings of the form F [x] where F is a field. The key

result which does not hold in more general polynomial rings is the division

with remainder theorem:

Theorem 27.3. Let F be a field, let f, g ∈ F [x], and assume that g ̸= 0.

Then there exist unique polynomials q, r ∈ F [x] (called the quotient and

remainder of dividing f by g) such that f = gq + r and deg(r) < deg(g).

Remark: The remainder r of dividing f by g is frequently denoted by the

symbol ‘f mod g’.

Proof. We briefly sketch a proof of the existence part. If deg(g) = 0, so that

g is a nonzero constant, we can simply set q = g−1f and r = 0 (note that

g−1 exists since F is a field).

Assume now that m = deg(g) > 0. Let us treat g as fixed and prove the

existence of q and r by complete induction on n = deg(f). More precisely,

let P (n) be the following statement:
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P (n) : For every f ∈ F [x] with deg(f) = n there exist q, r ∈ F [x] such

that f = gq + r and deg(r) < m = deg(g).

The base case will include all values of n which are < m (that is, n =

0, 1, . . . ,m− 1). For those values of n we can set q = 0 and r = f .

Induction Step: Let us now fix some n ≥ m, and assume that P (k) is true

for all k < n. Let us prove that P (n) is true.

Take any polynomial f ∈ F [x] with deg(f) = n, and let anx
n be its

leading term. By assumption the leading term of g is bmxm where bm ̸= 0.

Since F is a field, bm is invertible in F , so we can consider the monomial

h = an
bm

xn−m. Then f and gh both have degree n and the same leading

term, namely anx
n, so their difference f − gh has degree < n. Thus, we can

apply the induction hypothesis to conclude that there exist q, r ∈ F [x] with

deg(r) < m such that f−gh = gq+r. But then f = gh+gq+r = g(h+q)+r,

so P (n) is true. □

Note that the above proof effectively gives an algorithm for calculating

the quotient and the remainder, although in practice there are more efficient

ways to find those.

Using division with remainder, we can extend many basic properties of

integers (Z) established in this course to F [x]. We start with the definition

of gcd (greatest common divisor) and the polynomial version of the gcd

theorem.

Definition. A polyomial f ∈ F [x] is called monic if its leading coefficient

is equal to 1, that is f = xn +
∑n−1

i=0 aix
i for some ai ∈ F (here n = 0 is

allowed, so constant 1 is considered monic).

Definition. Let f, g ∈ F [x], and assume that (f, g) ̸= (0, 0), that is, at least

one of the polynomials f and g is nonzero. A polynomial d ∈ F [x] is called

a greatest common divisor (gcd) of f and g if

(i) d is monic;

(ii) d divides both f and g;

(iii) for any polynomial h which divides both f and g we have deg(h) ≤
deg(d).

We will denote such d by gcd(f, g). Neither the existence nor the unique-

ness of gcd(f, g) is obvious from the definition, but both are true by Theo-

rem 27.4 below:

Theorem 27.4 (GCD Theorem for polynomials). Let F be a field, and let

f, g ∈ F [x] with (f, g) ̸= (0, 0). The following hold:

(a) gcd(f, g) exists and is unique;
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(b) Let

S = {h ∈ F [x] : h = fu+ gv for some u, v ∈ F [x]}.

Then gcd(f, g) ∈ S and deg(gcd(f, g)) ≤ deg(h) for any h ∈ S.

Moreover, gcd(f, g) is the unique monic polynomial of smallest pos-

sible degree in S.

(c) If p is any polynomial such that p | f and p | g, then p | gcd(f, g).

About the proof. The proof is similar to the case of Z, but involves some

additional technicalities. We start by defining m to be the smallest degreee

of a nonzero polynomial in the set S (defined in part (b)), then show that

S contains a unique monic polynomial of degree m, call it d. Next we show

that this d satisfies the conclusion of (c): if p is any polynomial such that

p | f and p | g, then p | d. Using Lemma 27.2(b), it is now straightforward to

deduce that d satisfies the definition of gcd(f, g) and moreover that gcd(f, g)

is unique. This proves (a) and (c), and because of the way d was defined,

(b) holds as well. □

We can now define coprime polynomials and prove the coprime lemma

for polynomials in complete analogy with Z:

Definition. Polynomials f, g ∈ F [x] are called coprime if gcd(f, g) = 1.

Lemma 27.5. Let f, g, h ∈ F [x]. Assume that f | gh and that f and g are

coprime. Then f | h.

In order to formulate the analogue of Euclid’s lemma for polynomials,

we need to define a property of polynomials analogous to being prime for

integers. Such property is irreducibility.

Definition. Let F be a field and p ∈ F [x]. We say that p is irreducible if

(i) p is nonconstant;

(ii) p cannot be written as p = fg where f, g ∈ F [x] are both non-

constant.

Note that the convention not to consider constant polynomials irreducible

matches the convention not to count 1 as a prime number.

In the case of monic polynomials one can give a characterization of irre-

ducible polynomials which looks exactly like the definition of a prime num-

ber:

Lemma 27.6. Let p ∈ F [x], and assume that p is monic. Then p is ir-

reducible if and only if p ̸= 1 and the only monic divisors of p are p and

1.
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We can now state the polynomial analogue of Euclid’s lemma (which

follows from the coprime Lemma as in the case of Z) and (a suitable form

of) the unique factorization theorem for F [x].

Lemma 27.7. Let F be a field, p, f, g ∈ F [x]. Assume that p | fg and p is

irreducible. Then p | f or p | g.

Theorem 27.8. Let F be a field, and let f ∈ F [x] be a nonzero polynomial.

Then f can be written as a ·
k∏

i=1
pi where a ∈ F is a nonzero constant and

each pi ∈ F [x] is monic and irreducible. Moreover, a and k (the number of

factors) are uniquely determined by f and the sequence p1, . . . , pk is unique

up to permutation of factors.

27.3. Ideals in and quotients of polynomial rings. We continue study-

ing the rings R = F [x] where F is a field. As stated in Lecture 25, any ideal

in such a ring is principal:

Theorem 27.9. Let F be a field. Then any ideal I of F [x] is equal to

(f) = fF [x] for some f ∈ F [x].

Theorem 27.9 can be proved using the same general idea as Theorem 27.4.

If I = {0} is the zero ideal, we can just take f = 0. If I ̸= {0}, we define f

to be a nonzero polynomial of smallest possible degree in I. Then I contains

(f) by product absorption, and if (f) happens to be a proper ideal of I, we

can find another nonzero element r ∈ I with deg(r) < deg(f), contradicting

the choice of f .

Theorem 27.9 actually provides a different way to think about part (b)

of Theorem 27.4 (gcd Theorem):

Proposition 27.10. Let F be a field, let a, b ∈ F [x], and let

I = {au+ bv : u, v ∈ F [x]}.

Then I is an ideal of F [x] and I = dF [x] where d = gcd(a, b).

We now turn to the discussion of quotient rings F [x]/(f).

First recall that for any ring R and ideal I of R elements of the quotient

ring R/I are additive cosets a + I with a ∈ R, and the operations on R/I

are defined by (a+ I) + (b+ I) = (a+ b) + I and (a+ I)(b+ I) = ab+ I.

Let us now fix f ∈ R. Given a, b ∈ R, we say that a is congruent to

b mod f and write a ≡ b mod f if f | (b − a), that is, b = a + ft for

some t ∈ R. Similarly to congruences in Z, this gives us an equivalence

relation on R. If we denote by [a]f the equivalence class of a with respect
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to this relation (called the congruence class of a mod f), then by definition

[a]f = a+ fR = a+ (f).

Thus, we can think of elements of the quotient ring R/(f) simply as

congruence classes mod f , and ring operations can be rewritten as

[a]f + [b]f = [a+ b]f and [a]f [b]f = [ab]f .

Let us now go back to the case R = F [x], with F a field, and assume that

f ∈ F [x] is nonzero. Then for any h ∈ R we have [h]f = [r]f where r = h

mod f , the remainder of dividing h by f .

Thus, if we set n = deg(f), then any element of F [x]/(f) can be written

as [r]f with deg(r) < n, and moreover such a representation is unique. This

gives a notationally simpler way to think about the quotient ring F [x]/(f).

Let Pn(F ) be the set of all polynomials in F [x] of degree < n. Then we

can identify F [x]/(f) with Pn(F ) as a set, and ring operations (denoted by

⊕ and ⊙ below to avoid confusion with usual addition and multiplication)

are given by

• g ⊕ h = g + h (addition is the usual addition) and

• g ⊙ h = (gh) mod f .

Example: Let F = Z2 and f = x2 + x + 1 ∈ Z2[x]. Then P2(F ) =

{0, 1, x, x+1}, and the addition and multiplication on Z2[x]/(f) (under the

above identification) are given as follows:

⊕ 0 1 x x+ 1
0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

⊙ 0 1 x x+ 1
0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

From the multiplication table we see that any nonzero element of the quo-

tient ring Z2[x]/(x
2+x+1) is invertible, so this quotient ring is a field. We

could have proved this without directly computing the multiplication table

and instead using the following theorem:

Theorem 27.11. Let F be a field and f ∈ F [x]. Then the quotient ring

F [x]/(f) is a field ⇐⇒ f is irreducible.

This is a direct analogue of Corollary 9.2 which asserts that Zn is a field

⇐⇒ n is prime. Recall that Corollary 9.2 was deduced from Theorem 9.1
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which gives a complete description of invertible elements in Zn. Analogous

characterization remains true in polynomial rings and can be used to prove

Theorem 27.11 using similar logic:

Theorem 27.12. Let F be a field and f ∈ F [x] and Q = F [x]/(f). Let g ∈
F [x]. Then an element [g]f = g+(f) of Q is invertible ⇐⇒ gcd(f, g) = 1.


