Homework #5. Due on Thursday, October 17th, 11:59pm on Canvas Reading:

1. For this assignment: Online lecture 10 and 11. From Hungerford: 4.3, 7.1 and 7.2

2. For next week's class: Online lecture 12 and beginning of Lecture 13. From Hungerford: 7.3.

Online lectures are currently posted on the Spring 2016 webpage

https://m-ershov.github.io/3354_Spring2016/

Problems:

Preface to problem 1: Let F be a field. Recall that we defined irreducible polynomials in F[x] as follows. Let $f \in F[x]$.

- (i) First assume that f is monic. Then we say that f is *irreducible* if $f \neq 1$ and the only monic divisors of f in F[x] are 1 and f.
- (ii) In general we say that f is irreducible if $f \neq 0$ and the polynomial $\frac{f}{LC(f)}$ (which must be monic) is irreducible. Here LC(f) is the leading coefficient of f.

Note that the definition immediately implies that constant polynomials are never irreducible, while polynomials of degree 1 are always irreducible.

Problem 1:

- (a) Let F be an arbitrary field and let f(x) ∈ F[x] with deg(f) = 2 or
 3. Prove that f(x) is NOT irreducible ⇔ f(x) = (x a)g(x) for some g(x) ∈ F[x] and a ∈ F. Do not assume any results about irreducibility (you can freely use any general facts about fields as well as previously established properties of the degree function).
- (b) Give an example showing that the assertion of part (a) is false for polynomials of degree 4 (at least for some field F).
- (c) Let p be a prime (so that Z_p is a field). Find the number of irreducible monic polynomials of degree 2 in Z_p[x]. Hint: First use
 (a) to find the number of monic polynomials of degree 2 which are reducible (that is, not irreducible).
- (d) List explicitly all irreducible monic polynomials of degree 2 in Z₃[x].
 Hint: This should follow from your proof in (c).

Problem 2: In each of the following examples determine whether the given set G is a group with respect to a given operation. If G is a group,

prove why (that is, verify all the axioms); if G is not a group, state at least one axiom which does not hold and explain why.

- (a) $G = (\mathbb{R} \setminus \mathbb{Q}, +)$, the set of all irrational numbers with addition
- (b) $G = (\mathbb{Q}_{>0}, \cdot)$, the set of all POSITIVE rational numbers with multiplication

Note: For (b) use the following definition of $\mathbb{Q}_{>0}$: a rational number lies in $\mathbb{Q}_{>0}$ if it can be written as $\frac{a}{b}$ for some $a, b \in \mathbb{Z}_{>0}$ (but do not assume any other facts about inequalities in \mathbb{Q}).

Problem 3: Let $G = \mathbb{R} \setminus \{-1\}$ be the set of real numbers different from -1, and define the binary operation * on G by x * y = x + y + xy. Prove that (G, *) is a group, find its identity element and an explicit formula for the inverse of x. Warning: None of the four axioms in this example is obvious.

Problem 4: Let R be a ring with 1 (not necessarily commutative), and let R^{\times} be the set of invertible elements of R, that is,

$$R^{\times} = \{a \in R : \text{ there exists } b \in R \text{ such that } ab = ba = 1\}.$$

Prove that R^{\times} is closed with respect to multiplication (that is, if $x, y \in R^{\times}$, then $xy \in R^{\times}$). As mentioned in class, this is the main thing one needs to check to show that R^{\times} is a group with respect to multiplication.

Problem 5: Compute the multiplication tables for the groups $\mathbb{Z}_7^{\times}, \mathbb{Z}_8^{\times}$ and \mathbb{Z}_{10}^{\times} (here the superscript \times has the same meaning as in Problem 4).

In Problem 6 and 7 below we use multiplicative notation in groups.

Problem 6: In Lecture 12 on Mon, October 7th, we started analyzing the possible structure of the multiplication tables for groups of order 4. Using the Sudoku property, we proved that if G is a group of order 4 and G contains an element x such that $x^2 \neq e$, then $G = \{e, x, x^2, x^3\}$, and the multiplication table is as follows:

	e	x	x^2	x^3
e	e	x	x^2	x^3
x	x	x^2	x^3	e
x^2	x^2	x^3	e	x
x^3	x^3	e	x	x^2

(here the entries in the first column and the first row are the row and column labels, respectively).

Thus, it remains to consider groups G of order 4 such that $g^2 = e$ for all $g \in G$. Let G be such a group, and let $x \neq y$ be any distinct non-identity elements of G. Prove that $G = \{e, x, y, xy\}$ and compute its multiplication table with full justification. The answer should be determined uniquely.

Problem 7: A group G is called *abelian* (=commutative) if xy = yx for ALL $x, y \in G$. Prove that a group G is abelian $\iff (xy)^2 = x^2y^2$ for all $x, y \in G$.

Note/warning: By definition $g^2 = g * g$ where * is the group operation. To prove that a group G is abelian, you need to show that xy = yx for ALL $x, y \in G$ (you cannot pick x and y that you like).

Problem 8: Let F be a field. Recall from Lecture 10 that $GL_2(F)$ denotes the set of all **invertible** 2×2 matrices with coefficients in F. The set $GL_2(F)$ is a group with respect to matrix multiplication (the identity element of $GL_2(F)$ is the identity matrix, and the inverse of $A \in GL_2(F)$ is the inverse matrix in the usual sense). In order to determine whether a 2×2 matrix A lies in $GL_2(F)$ one can use the following result from linear algebra:

Theorem: Let F be a field and let $n \ge 2$ be an integer. Then an $n \times n$ matrix $A \in Mat_n(F)$ is invertible if and only if $det(A) \ne 0$.

Also recall that the determinant of a 2×2 matrix is given by the formula

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$$

Thus, $GL_2(F) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in F \text{ and } ad - bc \neq 0. \right\}$ (a) Prove the following formula for inverses in $GL_2(F)$:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = (ad - bc)^{-1} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Recall that if $\lambda \in F$ is a scalar, then by definition $\lambda \begin{pmatrix} a & b \\ c & d \end{pmatrix} =$

 $\begin{pmatrix} \lambda a & \lambda b \\ \lambda c & \lambda d \end{pmatrix}$ **Hint:** Computation will be very short if use a suitable part of Theorem 11.1.

(b) Let $F = \mathbb{Z}_7$ and $A = \begin{pmatrix} [1] & [2] \\ [3] & [4] \end{pmatrix}$. Find A^{-1} (and simplify your answer). Answer the same question for $F = \mathbb{Z}_5$.