
Homework #5. Due on Thursday, October 3rd, 11:59pm on Canvas

Reading:

1. For this assignment: Online lecture 8 and 9. From Hungerford: 2.3,

4.1 and 4.2.

2. For next week’s classes: Online lecture 10. From Hungerford: 4.2 and

parts of 4.3, 5.1 and 7.1.

Online lectures are currently posted on the Spring 2016 webpage

https://m-ershov.github.io/3354_Spring2016/

Problems:

Preface to problem 1: Recall from the previous homework that for

n, k ∈ Z with 0 ≤ k ≤ n, the binomial coefficient
(
n
k

)
is defined by

(
n
k

)
=

n!
k!(n−k)! (where 0! = 1). Also recall the binomial theorem: for every a, b ∈ R
and n ∈ N,

(a+b)n =
n∑

k=0

(
n

k

)
an−kbk =

(
n

0

)
an+

(
n

1

)
an−1b+. . .+

(
n

n− 1

)
abn−1+

(
n

n

)
bn.

Note that
(
n
k

)
is always an integer – this is not obvious from definition, but

it is (almost) obvious from the binomial theorem.

Problem 1: Suppose that p is prime and 0 < k < p. Prove that p |
(
p
k

)
.

Hint: First prove the following lemma: Suppose that n,m ∈ Z, p is prime,

m | n, p | n and p ∤ m. Then p | n
m (this follows from Euclid’s lemma).

Problem 2: In both parts of this problem p is a prime number.

(a) Prove the little Fermat’s theorem: np ≡ n mod p for any n ∈ N.
(b) Reformulate (a) as an equality in Zp. Your reformulation should be

of the form “for all x ∈ Zp we have f(x) = 0 where f : Zp → Zp is a

certain explicit function”

Hint for (a): Fix p and use induction on n. For the induction step use the

result of Problem 1.

Problem 3: Let X = R2 (the set of ordered pairs of real numbers) and

define a relation ∼ on X by

(x1, y1) ∼ (x2, y2) ⇐⇒ x1 + y1 = x2 + y2.

(a) Prove that ∼ is an equivalence relation.
1

https://m-ershov.github.io/3354_Spring2016/

2

(b) Describe equivalence classes with respect to ∼. Hint: there is a very

easy geometric description if you think of elements of X as points

on the Euclidean plane.

Problem 4: Define a relation ∼ on Z by

x ∼ y ⇐⇒ x3 ≡ y3 mod 4.

(a) Prove that ∼ is an equivalence relation.

(b) Find the number of equivalence classes with respect to ∼ and de-

scribe (explicitly) each class.

Hint for (b): The equivalence classes with respect to ∼ are closely related

to congruence classes mod 4. Once you figure out the relationship (and why

it holds), it is fairly easy to finish the problem.

Problem 5: Let R be a commutative ring with 1 and R[x] the ring of

polynomials with coefficients in R. Prove the following properties of the

degree function:

(a) deg(f + g) ≤ max{deg(f), deg(g)} for all f, g ∈ R[x]

(b) deg(f + g) = max{deg(f),deg(g)} for all f, g ∈ R[x] such that

deg(f) ̸= deg(g)

(c) deg(fg) ≤ deg(f) + deg(g)

(d) If R has no zero divisors (such R is called a domain), then deg(fg) =

deg(f) + deg(g)

(e) Find a specific n and f ∈ Zn[x] such that f is non-constant (that

is, deg(f) > 0), but f is invertible. Hint: Part (d) (and what we

proved earlier) yields certain restrictions on the possible values of n.

Problem 6: Let f(x) = x4 − 1 and g(x) = x2 + 3x + 1, and consider f

and g either as polynomials in Z5[x] or Z7[x] (in both cases the coefficients

of f and g should be interpreted as congruence classes mod 5 and mod 7,

respectively). In both cases do the following:

(a) divide f by g with remainder

(b) Compute gcd(f, g)

(c) Find explicit polynomials u(x) and v(x) such that gcd(f(x), g(x)) =

f(x)u(x) + g(x)v(x).

Note: We will talk about gcd in class on Monday, Sep 30 (see also 4.2 in

Hungerford), but the following information should be sufficient to solve this

problem. If F is a field and f(x), g(x) ∈ F [x], not both 0, gcd(f(x), g(x)) is

defined to be the MONIC polynomial of largest possible degree which divides

3

both f(x) and g(x) (a polynomial is called monic if its leading coefficient is

1). We will prove that gcd(f(x), g(x)) always exists and is unique.

Similarly to Z, one can prove that gcd(f(x), g(x)) is the unique monic

polynomial of smallest possible degree representable as f(x)u(x)+ g(x)v(x)

for some u(x), v(x) ∈ F [x]. Moreover, one can find the gcd itself as well

as u and v from the above representation using the Euclidean algorithm

essentially in the same way as for Z. The only real difference is that while

in the case of Z, gcd is the last nonzero remainder in the first part of the

Euclidean algorithm, in the polynomial case the last nonzero remainder is a

constant multiple of the gcd (to get the actual gcd, one just needs to divide

that remainder by its leading coefficient).

