Homework #5. Due on Thursday, October 3rd, 11:59pm on Canvas Reading:

1. For this assignment: Online lecture 8 and 9. From Hungerford: 2.3, 4.1 and 4.2.

2. For next week's classes: Online lecture 10. From Hungerford: 4.2 and parts of 4.3, 5.1 and 7.1.

Online lectures are currently posted on the Spring 2016 webpage

https://m-ershov.github.io/3354_Spring2016/

Problems:

Preface to problem 1: Recall from the previous homework that for $n, k \in \mathbb{Z}$ with $0 \le k \le n$, the binomial coefficient $\binom{n}{k}$ is defined by $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ (where 0! = 1). Also recall the binomial theorem: for every $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k} = \binom{n}{0} a^{n} + \binom{n}{1} a^{n-1} b + \ldots + \binom{n}{n-1} a b^{n-1} + \binom{n}{n} b^{n}.$$

Note that $\binom{n}{k}$ is always an integer – this is not obvious from definition, but it is (almost) obvious from the binomial theorem.

Problem 1: Suppose that p is prime and 0 < k < p. Prove that $p \mid {p \choose k}$. **Hint:** First prove the following lemma: Suppose that $n, m \in \mathbb{Z}$, p is prime, $m \mid n, p \mid n$ and $p \nmid m$. Then $p \mid \frac{n}{m}$ (this follows from Euclid's lemma).

Problem 2: In both parts of this problem p is a prime number.

- (a) Prove the little Fermat's theorem: $n^p \equiv n \mod p$ for any $n \in \mathbb{N}$.
- (b) Reformulate (a) as an equality in \mathbb{Z}_p . Your reformulation should be of the form "for all $x \in \mathbb{Z}_p$ we have f(x) = 0 where $f : \mathbb{Z}_p \to \mathbb{Z}_p$ is a certain explicit function"

Hint for (a): Fix p and use induction on n. For the induction step use the result of Problem 1.

Problem 3: Let $X = \mathbb{R}^2$ (the set of ordered pairs of real numbers) and define a relation \sim on X by

$$(x_1, y_1) \sim (x_2, y_2) \iff x_1 + y_1 = x_2 + y_2.$$

(a) Prove that \sim is an equivalence relation.

(b) Describe equivalence classes with respect to \sim . Hint: there is a very easy geometric description if you think of elements of X as points on the Euclidean plane.

Problem 4: Define a relation \sim on \mathbb{Z} by

$$x \sim y \iff x^3 \equiv y^3 \mod 4.$$

- (a) Prove that \sim is an equivalence relation.
- (b) Find the number of equivalence classes with respect to \sim and describe (explicitly) each class.

Hint for (b): The equivalence classes with respect to \sim are closely related to congruence classes mod 4. Once you figure out the relationship (and why it holds), it is fairly easy to finish the problem.

Problem 5: Let R be a commutative ring with 1 and R[x] the ring of polynomials with coefficients in R. Prove the following properties of the degree function:

- (a) $\deg(f+g) \le \max\{\deg(f), \deg(g)\}\$ for all $f, g \in R[x]$
- (b) $\deg(f + g) = \max\{\deg(f), \deg(g)\}$ for all $f, g \in R[x]$ such that $\deg(f) \neq \deg(g)$
- (c) $\deg(fg) \le \deg(f) + \deg(g)$
- (d) If R has no zero divisors (such R is called a domain), then $\deg(fg) = \deg(f) + \deg(g)$
- (e) Find a specific n and $f \in \mathbb{Z}_n[x]$ such that f is non-constant (that is, deg(f) > 0), but f is invertible. **Hint:** Part (d) (and what we proved earlier) yields certain restrictions on the possible values of n.

Problem 6: Let $f(x) = x^4 - 1$ and $g(x) = x^2 + 3x + 1$, and consider f and g either as polynomials in $\mathbb{Z}_5[x]$ or $\mathbb{Z}_7[x]$ (in both cases the coefficients of f and g should be interpreted as congruence classes mod 5 and mod 7, respectively). In both cases do the following:

- (a) divide f by g with remainder
- (b) Compute gcd(f,g)
- (c) Find explicit polynomials u(x) and v(x) such that gcd(f(x), g(x)) = f(x)u(x) + g(x)v(x).

Note: We will talk about gcd in class on Monday, Sep 30 (see also 4.2 in Hungerford), but the following information should be sufficient to solve this problem. If F is a field and $f(x), g(x) \in F[x]$, not both 0, gcd(f(x), g(x)) is defined to be the MONIC polynomial of largest possible degree which divides

 $\mathbf{2}$

both f(x) and g(x) (a polynomial is called monic if its leading coefficient is 1). We will prove that gcd(f(x), g(x)) always exists and is unique.

Similarly to \mathbb{Z} , one can prove that gcd(f(x), g(x)) is the unique monic polynomial of smallest possible degree representable as f(x)u(x) + g(x)v(x)for some $u(x), v(x) \in F[x]$. Moreover, one can find the gcd itself as well as u and v from the above representation using the Euclidean algorithm essentially in the same way as for \mathbb{Z} . The only real difference is that while in the case of \mathbb{Z} , gcd is the last nonzero remainder in the first part of the Euclidean algorithm, in the polynomial case the last nonzero remainder is a constant multiple of the gcd (to get the actual gcd, one just needs to divide that remainder by its leading coefficient).