9. Congruence classes (continued)

Definition. Let R be a ring with 1. An element $a \in R$ is called <u>invertible</u> if there exists $b \in R$ such that ab = ba = 1.

Theorem 9.1. Let $n \geq 2$ be an integer. Then an element $[a] \in \mathbb{Z}_n$ is invertible \iff a and n coprime.

Proof. " \Rightarrow " Suppose that $[a] \in \mathbb{Z}_n$ is invertible. This means that [a][k] = [1] for some $k \in \mathbb{Z}$ or, equivalently [ak] = [1] for some $k \in \mathbb{Z}$. Hence $ak \equiv 1 \mod n$, so 1 - ak = nl for some $k, l \in \mathbb{Z}$ or, equivalently, ak + nl = 1. Since gcd(a, n) divides both a and n and hence also divides ak + nl, this forces gcd(a, n) = 1, so a and n are coprime.

" \Leftarrow " Suppose a and n are coprime. Then by GCD Theorem there exist $k, l \in \mathbb{Z}$ such that ak + nl = 1. From this point we can argue as in the proof of " \Rightarrow " (but reversing the order of steps) to conclude that [a] is invertible in \mathbb{Z}_n .

9.1. Zero divisors in \mathbb{Z}_n .

Definition. Let R be a commutative ring. An element $a \in R$ is called a <u>zero divisor</u> if a is nonzero and there exists a nonzero element $b \in R$ such that ab = 0.

For instance, the element [2] of the ring $R = \mathbb{Z}_6$ is a zero divisor. Indeed, $[2] \neq [0]$ since $6 \nmid (2-0)$ and similarly $[3] \neq [0]$. But $[2] \cdot [3] = [6] = [0]$.

We already know that fields have no zero divisors – this is precisely the assertion of Problem 2 in HW#1. Thus, the existence of zero divisors in \mathbb{Z}_6 provides another proof of the fact that \mathbb{Z}_6 is not a field (we have already established this in Lecture 8 after computing the multiplication table). The converse of the above statement is not true, that is, if R is a commutative ring with 1 without zero divisors, then R does not have to be a field (e.g. integers \mathbb{Z} is not a field, but does not have zero divisors). It turns out, however, that for the rings of congruence classes \mathbb{Z}_n being a field is equivalent to having no zero divisors, and both conditions hold if and only if n is prime:

Theorem 9.2. Let $n \geq 2$ be an integer. The following are equivalent:

- (1) n is prime
- (2) \mathbb{Z}_n is a field
- (3) \mathbb{Z}_n has no zero divisors

Proof. We will prove the equivalence of these three conditions "cyclically" by first showing the implication $(1)\Rightarrow(2)$, then $(2)\Rightarrow(3)$ and finally $(3)\Rightarrow(1)$.

"(1) \Rightarrow (2)" Recall that a field is a commutative ring with 1 in which every nonzero element is invertible and $0 \neq 1$. Assume that n is prime. Since $n \geq 2$, we clearly have $[0] \neq [1]$ in \mathbb{Z}_n . Since $\mathbb{Z}_n \setminus \{[0]\} = \{[1], [2], \ldots, [n-1]\}$, it remains to show that [a] is invertible in \mathbb{Z}_n for every $1 \leq a \leq n-1$. Since n is prime, every such a is coprime to n, so by Theorem 9.1, [a] is invertible in \mathbb{Z}_n for every such a.

"(2) \Rightarrow (3)" This implication holds since a field cannot have zero divisors by HW#1.2 (no specific properties of \mathbb{Z}_n are used here).

"(3) \Rightarrow (1)" We will prove this implication by contrapositive: if n is not prime, then \mathbb{Z}_n has zero divisors.

So assume that n is not prime. Since we also assume that $n \geq 2$, by definition of a prime number, n must have a positive divisor k different from 1 and n, in which case we must have 1 < k < n. Thus n = kl for some $l \in \mathbb{Z}$, and since 1 < k < n, we also have 1 < l < n. In particular, this implies that $n \nmid k$ and $n \nmid l$, so both [k] and [l] are nonzero elements of \mathbb{Z}_n . But [k][l] = [kl] = [n] = [0], so \mathbb{Z}_n has a zero divisor, namely [k].

9.2. Solving equations in \mathbb{Z}_n .

Example 1. Let n be a prime. Find all $z \in \mathbb{Z}_n$ such that $z^2 = [1]$.

Solution 1: (working inside \mathbb{Z}_n) Suppose that $z^2 = [1]$. Subtracting [1] from both sides, we get $z^2 - [1] = [0]$. Since $[1] = [1]^2$, we get

$$(z - [1])(z + [1]) = [0].$$
 (***)

Since n is prime, \mathbb{Z}_n is a field. Hence by HW #1.2, we conclude from (***) that z - [1] = 0 or z + [1] = 0. Thus, either z = [1] or z = -[1] = [-1] = [n-1].

So far we showed that equality $z^2 = [1]$ implies z = [1] or z = [n-1], so there are at most two solutions. To check that [1] and [n-1] are indeed solutions, we plug them into the original equation: $[1]^2 = [1^2] = [1]$ and $[n-1]^2 = [-1]^2 = [(-1)^2] = [1]$, so both 1 and [n-1] are solutions.

Final answer: z = [1] or [n-1].

Solution 2: (reducing to question about integers) We know that z = [x] for some $x \in \mathbb{Z}$. Thus our equation is $[x]^2 = [1]$ which can be rewritten as $[x^2] = [1]$. The latter means that $x^2 \equiv 1 \mod n$, that is, $n \mid (x^2 - 1)$.

Thus, $n \mid (x-1)(x+1)$, and by Euclid's lemma (recall that n is prime), we have $n \mid (x-1)$ or $n \mid (x+1)$. Hence either $x \equiv 1 \mod n$, in which

case [x] = [1], or $x \equiv -1 \mod n$, in which case [x] = [-1] = [n-1]. As in Solution 1, we check that z = [1] and z = [n-1] are solutions by plugging them into the original equation.

Exercise 1. Show (by an explicit example) that if n is not prime, the equation $z^2 = [1]$ may have more than 2 solutions (this is true for some, but not all non-prime n).

- 9.3. Some concluding remarks. We finished the lecture by discussing the connection between the ring \mathbb{Z}_n introduced in Lecture 8 (referred below as "new" \mathbb{Z}_n) and the "hypothetical ring \mathbb{Z}_n " discussed in Lecture 2 (referred below as "old" \mathbb{Z}_n). Recall that in Lecture 2 we defined \mathbb{Z}_n to be the set of integers $\{0,1,\ldots,n-1\}$ and asked the following question: can we define operations \oplus and \odot on \mathbb{Z}_n such that
 - (i) \mathbb{Z}_n with these operations is a commutative ring with 1
 - (ii) $x \oplus y = x + y$ whenever $0 \le x + y \le n 1$ and $x \odot y = xy$ whenever $0 \le xy \le n 1$ (where the sum and the product on the right-hand sides are the usual addition and multiplication)?

We can now answer this question in the affirmative: take the addition and multiplication tables for the new \mathbb{Z}_n , remove all the brackets and relabel the operations as \oplus and \odot . Then it is easy to see (i) and (ii) will hold.

A natural question is whether there are explicit formulas for \oplus and \odot on the "old" \mathbb{Z}_n . The answer is yes, but we need an additional notation. Given $x \in \mathbb{Z}$, denote by \overline{x} the remainder of dividing x by n (that is, \overline{x} is the unique integer between 0 and n-1 such that $x \equiv \overline{x} \mod n$). Then the operations \oplus and \odot on the "old" \mathbb{Z}_n are given by the formulas

$$x \oplus y = \overline{x+y}$$
 and $x \odot y = \overline{xy}$ $(***)$

One may wonder now why we had to define \mathbb{Z}_n in a fancy way as the set of congruence classes mod n instead of presumably simpler old definition $\mathbb{Z}_n = \{0, 1, \ldots, n-1\}$ with operations defined by (***). The answer is that if operations were defined by (***), it would have required much more work to verify the ring axioms. In addition, the fact that in the new definition we can consider [x] as an element of \mathbb{Z}_n for every $x \in \mathbb{Z}$ (not just x between 0 and n-1) turns out to be extremely convenient.