Homework #4. Due on Thursday, September 22nd in class Reading:

1. For this assignment: Online lectures 8-9 and Section 1.4 and 2.2 of the book.

2. For next week's classes: Online lectures 9-10 and Sections 1.4 and 3.1 of the book.

Online lectures are currently posted on last semester's webpage

http://people.virginia.edu/~mve2x/3354_Spring2016

Problems:

Problem 1: Let $X = \mathbb{R}^2$ (the set of ordered pairs of real numbers) and define a relation \sim on X by

$$(x_1, y_1) \sim (x_2, y_2) \iff x_1 + y_1 = x_2 + y_2.$$

- (a) Prove that \sim is an equivalence relation.
- (b) Describe equivalence classes with respect to \sim . Hint: there is a very easy geometric description if you think of elements of X as points on the Euclidean plane.

Problem 2: Define a relation \sim on \mathbb{Z} by

$$x \sim y \iff x^3 \equiv y^3 \mod 4.$$

- (a) Prove that \sim is an equivalence relation.
- (b) Find the number of equivalence classes with respect to \sim and describe (explicitly) each class.

Hint for (b): The equivalence classes with respect to \sim are closely related to congruence classes mod 4. Once you figure out the relationship (and why it holds), it is fairly easy to finish the problem.

Problem 3: Let R be a commutative ring with 1.

- (a) Recall that an element $a \in R$ is called *invertible* if there exists $b \in R$ such that ab = 1
- (b) An element $a \in R$ is called a zero divisor if $a \neq 0$ and there exists NONZERO $b \in R$ such that ab = 0. For instance, [2] is a zero divisor in \mathbb{Z}_6 since $[2] \neq [0]$ and $[3] \neq [0]$ but $[2] \cdot [3] = [6] = [0]$ (this calculation shows that [3] is also a zero divisor).

Prove that no element of R can be both invertible and a zero divisor. **Hint:** This is very similar to Problem 2 in Homework#1. **Problem 4:** Do each of the following for n = 8 AND n = 10.

- (a) Compute the multiplication table in \mathbb{Z}_n
- (b) Use the multiplication table to find all invertible elements of \mathbb{Z}_n .
- (c) Use the multiplication table to find all zero divisors of \mathbb{Z}_n
- (d) Verify that your answers in (b) and (c) are consistent with Proposition 1.4.5 in the book.

Problem 5: Compute $[38]^{-1}$ in \mathbb{Z}_{83} . **Hint:** The proof of Proposition 1.4.5(a) (equivalently, Theorem 9.1 from online notes) shows how to reduce this problem to another computational problem that was explicitly discussed in class.

Let R be a ring. An element $x \in R$ is called *idempotent* if $x^2 = x$. Note that 0 and 1 (if 1 exists in R) are always idempotent elements.

Problem 6: Use direct computation to find all idempotent elements in $\mathbb{Z}_5, \mathbb{Z}_8$ and \mathbb{Z}_{10} .

Problem 7: Let p be a prime. Prove that \mathbb{Z}_p has no idempotents apart from [0] and [1].

Bonus Problem: Let $n \ge 2$ be an integer. Prove that the following are equivalent:

(a) $n = p_1 \dots p_k$ where p_1, \dots, p_k are distinct primes (possibly k = 1), that is, in the prime factorization of n all the exponents are equal to 1.

(b) if $[x] \in \mathbb{Z}_n$ is any nonzero element, then $[x]^2 \neq [0]$.

Hint: It is probably easiest to prove the implication (b)" \Rightarrow "(a) by contrapositive. Assume that *n* is not a product of distinct primes. Then one can write $n = p^2m$ for some prime *p* and $m \in \mathbb{N}$. Find *x* (which can be explicitly expressed in terms of *p* and *m*) such that $[x] \neq [0]$ in \mathbb{Z}_n , but $[x]^2 = [0]$.