Homework #2. Due on Thursday, September 8th in class Reading:

1. For this assignment: Online lectures 3-5 and Sections 1,1 and 1.2 of the book.

2. For next week's classes: Online lectures 6-7 and Section 1.3 of the book. Online lectures are currently posted on last semester's webpage

http://people.virginia.edu/~mve2x/3354_Spring2016

Problems:

Problem 1: Given $n, k \in \mathbb{Z}$ with $0 \leq k \leq n$, define the binomial coefficient $\binom{n}{k}$ $\binom{n}{k}$ by

$$
\binom{n}{k} = \frac{n!}{k!(n-k)!}
$$

(recall that $0! = 1$).

- (a) Prove that $\binom{n}{k}$ $\binom{n}{k} = \binom{n-1}{k}$ $\binom{-1}{k} + \binom{n-1}{k-1}$ $\binom{n-1}{k-1}$ for any $1 \leq k < n$ (direct computation).
- (b) Now prove the binomial theorem: for every $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k = \binom{n}{0} a^n + \binom{n}{1} a^{n-1} b + \ldots + \binom{n}{n-1} a^{n-1} + \binom{n}{n} b^n.
$$

Hint: Use induction on n . For the induction step write $(a + b)^{n+1} = (a + b)^n \cdot (a + b)$ and use part (a).

Problem 2:

- (a) Let R be an ordered ring. Prove that $x^2 > 0$ for every nonzero $x \in R$. **Hint:** Consider two cases.
- (b) Use (a) to prove that $\mathbb C$ (complex numbers) is not an ordered ring (no matter how we try to define the set of positive elements).

Problem 3: Let $a, b, c \in \mathbb{Z}$ such that $c \mid a$ and $c \mid b$. Prove directly from definition of divisibility that $c \mid (ma + nb)$ for any $m, n \in \mathbb{Z}$ (do not refer to any divisibility properties proved in class).

Problem 4: Let $a, b, c \in \mathbb{Z}$ such that $c \mid ab$. Is it always true that $c \mid a$ or $c \mid b$? If the statement is true for all possible values of a, b, c , prove it; otherwise give a counterexample.

Problem 5: Let $a = 382$ and $b = 26$. Use Euclidean algorithm to compute $gcd(a, b)$ and find $u, v \in \mathbb{Z}$ such that $au + bv = gcd(a, b)$.

Problem 6: Prove the key lemma, justifying the Euclidean algorithm:

Lemma: Let $a, b \in \mathbb{Z}$ with $b > 0$. Divide a by b with remainder: $a = bq + r$. Then $gcd(a, b) = gcd(b, r)$.

Hint: Show that the pairs $\{a, b\}$ and $\{b, r\}$ have the same set of common divisors, that is,

- (i) if c | a and c | b, then c | r (and so c divides both b and r)
- (ii) if $c \mid b$ and $c \mid r$, then $c \mid a$ (and so c divides both a and b).

Problem 7: Let $a, b \in \mathbb{Z}$, not both 0, let $d = \gcd(a, b)$, and let

 $S = \{x \in \mathbb{Z} : x = am + bn \text{ for some } m, n \in \mathbb{Z}\}.$

By GCD Theorem, d is the smallest positive element of S , and a natural problem is to describe all elements of S.

- (a) Prove that if k is any element of S, then $d \mid k$. **Hint:** Problem 1.
- (b) Prove that if $k \in \mathbb{Z}$ and $d \mid k$, then $k \in S$. **Hint:** Use the first of part of GCD Theorem (as stated in class).
- (c) Deduce from (a) and (b) that elements of S are precisely integer multiples of d.

Problem 8: Let $a, b \in \mathbb{N}$, and let p_1, \ldots, p_k be the set of all primes which divide a or b (or both). By UFT (unique factorization theorem), we can write $a = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ and $b = p_1^{\beta_1} p_2^{\beta_2} \dots p_k^{\beta_k}$ where each α_i and each β_i is a non-negative integer (note: some exponents may be equal to zero since some of the above primes may divide only one of the numbers a and b). For instance, if $a = 12$ and $b = 20$, our set of primes is $\{2, 3, 5\}$, and we write $12 = 2^1 \cdot 3^2 \cdot 5^0$ and $20 = 2^2 \cdot 3^0 \cdot 5^1$.

- (a) Prove that $a | b \iff \alpha_i \leq \beta_i$ for each i.
- (b) Give a formula for $gcd(a, b)$ in terms of p_i 's, α_i 's and β_i 's and justify it using the definition of GCD.
- (c) Give a formula for the least common multiple of a and b in terms of p_i 's, α_i 's and β_i 's. No proof is necessary.

2