
Homework #11. Due on Thursday, December 1st

Reading:

1. For this assignment: Lectures 22-24, Sections 3.8 (pp. 168-175) and 5.1.

2. For the next three classes (Nov 22, 29 and Dec 1): Lectures 24-26,
Sections 5.1, 5.2 and 5.3 (pp. 251-254)

Problems:

Note: Recall that at the beginning of Lecture 22 we gave a different
description of the octic group D8: if we denote by r the rotation by 90
degrees (in any direction) and by s any of the 4 reflections in D8, then
D8 = {e, r, r2, r3, s, sr, sr2, sr3} as a set; moreover, the multiplication table
of D8 is uniquely determined by the relations r4 = s2 = e and rs = sr3.
The correspondence with the original notations for the elements of D8 (in-

troduced in Lecture 10) is as follows: if we set r = r1 and s = s1, then
r0 = e, r1 = r, r2 = r2, r3 = r3, s1 = s, s2 = sr, s3 = sr2 and s4 = sr3.

In Problems 1 and 5 of this assignment which deal with D8 you can use
either the old or the new notations, but please be consistent. Problems are
formulated using the new notations (which are probably more convenient for
computational purposes).

Problem 1: Let G = D8, the octic group, and H = 〈r2〉 = {e, r2}. Describe
the elements of the quotient group G/H and compute the multiplication table
for G/H. Show details of your computation (some sample computations were
done in Lecture 22 on November 15th). Make sure that in the multiplication
table you do not use multiple names for the same element of G/H.

Problem 2: Let G = (Z12,+) and H = 〈[4]〉, the cyclic subgroup generated
by [4].

(a) Describe the elements of the quotient group G/H and compute the
“multiplication” table for G/H (the word “multiplication” is in quotes
because the group operation in G is addition).

(b) Deduce from your computation in (a) that G/H is isomorphic to Z4.

(c) Now give a different proof of the isomorphism G/H ∼= Z4 using FTH.

Problem 3: Let A and B be a groups and G = A×B their direct product.
Let Ã = {(a, eB) : a ∈ A} be the subset of G consisting of all elements whose
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second component is identity. Use FTH to prove that Ã is a normal subgroup
of G and the quotient group G/Ã is isomorphic to B.

Problem 4: This problem deals with the group R/Z, the quotient of the
group (R,+) of reals with addition by the subgroup of integers. Let x ∈ R.
Prove that x + Z (considered as an element of R/Z) has finite order if and
only if x ∈ Q.

Problem 5: Before doing this problem read the full subsection on transver-
sals in the online version of Section 23 (only a brief part of it was discussed
in class).

In each of the following examples, find a transversal of H in G. Also
decide whether there exists a transversal which is a subgroup: if yes, exhibit
such a transversal; if not, prove why.

(a) G = Z6, H = 〈[2]〉.

(b) G = Z9, H = 〈[3]〉.

(c) G = D8, H = 〈r〉 = {e, r, r2, r3}, the rotation subgroup.

(d) G = D8, H = 〈r2〉 = {e, r2}.

Problem 6: The goal of this problem is to establish a simple relation be-
tween centralizers and conjugacy classes: let G be a finite group, x ∈ G, let
C(x) be the centralizer of x and K(x) the conjugacy class of x. Then

|K(x)| = |G|
|C(x)|

(∗ ∗ ∗)

(a) Let g1, g2 ∈ G. Prove that g1xg
−1
1 = g2xg

−1
2 ⇐⇒ g1C(x) = g2C(x).

Hint: Use Theorem 19.2.

(b) Now use (a) to show that |K(x)| = [G : C(x)], the index of C(x) in
G. Hint: find an explicit bijection between K(x) and the quotient set
G/C(x).

Since [G : C(x)] = |G|
C(x)

by the (proof of) Lagrange Theorem, (b) implies

formula (***).

Problem 7:

(a) Let Z[i] be the set of all complex numbers of the form a + bi with
a, b ∈ Z. Prove that Z[i] is a subring of C. This ring is called Gaussian
integers.
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(b) (optional) Let Q[i] be the set of all complex numbers of the form a+ bi
with a, b ∈ Q. Prove that Q[i] is a subfield of C. Note: If F is a field
and S is a subset of F , to prove that S is a subfield you need to check
that S is a subring and, in addition, S contains multiplicative inverses
of all its nonzero elements (for any nonzero s ∈ S, the multiplicative
inverse s−1 exists in F because F is a field, but you have to show that
s−1 actually lies in S).

Problem 8: Let S = {a + b
√

2 + c
√

3 : a, b, c ∈ Z}.

(a) Let T be a subring of R which contains 1 and
√

2 and
√

3. Prove that
T contains all elements of S.

(b) Prove that S is NOT a subring of R.

(c) Find the minimal subring of R which contains all elements of S. First
guess what the answer should be, call your answer S1 (step 1), then
prove that S1 is a subring (step 2), and finally prove that S1 is the
minimal subring containing S (step 3).

Hint for (c): Your proof in part (b) should suggest which elements must
be added to S to get a subring.

Bonus Problem: This is a continuation of the Bonus Problem from HW#10.
We keep all the notations introduced in that problem.

Recall that we are trying to prove the following theorem.
Theorem: Let p be an odd prime. Any group of order 2p is isomorphic to
Z2p or D2p (the group of isometries of a regular p-gon).

The following was established in HW#10 : Let G be a group of order 2p,
and assume that G 6∼= Z2p. Then G contains elements x, y such that

xp = e, y2 = e, yxy−1 = x−1 (∗ ∗ ∗).

(i) Prove that G = {e, x, x2, . . . , xp−1, y, yx, yx2, . . . , yxp−1}

(ii) Now use (i) and the relations (***) to construct an explicit isomorphism
from G to D2p (and prove that your map is an isomorphism).
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