
Homework #10. Due Thursday, November 17th

Reading:

1. For this assignment: online lectures 19-21, 17 (section 17.4) and notes on
odd/even permutations (see spring 2016 webpage), sections 3.2 (pp. 81-83),
3.6 and 3.8 (pp. 164-167)

2. For next week’s classes: online Lecture 22-23 and 3.8 (pp. 168-175)

Note: Several problems in this assignment deal with the octic group D8.
When working with this group, you should use either notations for its ele-
ments introduced in online Lecture 10 (r0, r1, r2, r3, s1, s2, s3, s4) or notations
from the book introduced in Section 3.6 (words in symbols a and b), but be
consistent (use the same notation in all problems). Note that in the book
the octic group is denoted by D4, not D8. The correspondence between the
notations in the book and Lecture 10 is given below:

r0 = e, r1 = a, r2 = a2, r3 = a3, s3 = b, s4 = ab, s1 = a2b, s2 = a3b.

Problems:

Problem 1: Let ϕ : D8 → S8 be the homomorphism form the proof of Cay-
ley’s theorem. Describe ϕ explicitly (by computing ϕ(g) for every g ∈ D8)
explicitly. You can use the version of the proof of Cayley’s theorem from
online Lecture 17 (in which case elements of ϕ(D8) will literally be ele-
ments of S8) or the proof given on page 142 in the book (which is essen-
tially the same as the proof given in class on Tue, Nov 8), in which case
elements of ϕ(D8) will be permutations of the set {r0, r1, r2, r3, s1, s2, s3, s4}
(or {e, a, a2, a3, b, ab, ab2, ab3}), depending on the notations you use.

Problem 2: Let G be a group and H a subgroup of G. In each of the
following examples describe left cosets of H (in G). Find the number of
distinct cosets and list all elements in each coset.

(a) G = Z12, H = 〈[3]〉.

(b) G = D8, H = {r0, r1, r2, r3} (the rotation subgroup).

(c) G = D8, H = 〈s1〉 = {r0, s1} (recall that s1 is the reflection wrt y = 0).

Problem 3: Let G be a group and H a subgroup of G.

(a) Let g ∈ G. Prove that gH = H if and only if g ∈ H. State the
analogous result for right cosets.
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(b) Suppose that H has index 2 in G. Prove that H is normal in G (you
will likely need (a) for your proof). Note: Usually, to prove that a
subgroup is normal, conjugation criterion (Theorem 20.2) is easier to
use than definition, but this problem is a rare exception. Hint: see
the end of the assignment.

Problem 4: Let G = D8. For each subgroup of D8, determine whether it is
normal or not. The complete diagram of subgroups of D8 can be found on
page 148 of the book. Hint: For subgroups which are normal, use one of the
criteria discussed in class. Note that the center Z(G) = {r0, r2} = {e, a2}
(verify this). For subgroups which are not normal, give a direct proof that
they are not normal (using definition).

Problem 5: Let G be a group, let H and K be subgroups of G, and suppose
that H is normal in G. Let HK = {hk : h ∈ H, k ∈ K}. Prove that HK is
a subgroup of G.

Problem 6: Before doing this problem read about even and odd permuta-
tions either in the book or in the class/online notes.

(a) Write the permutation (1, 2)(3, 4, 5)(6, 7, 8, 9)(10, 11, 12)(13, 14) as a
product of transpositions.

(b) Let f ∈ Sn be a cycle of length k. Prove that f is even if k is odd, and
f is odd if k is even.

(c) Let f ∈ Sn. Write f as a product of disjoint cycles f = f1f2 . . . fr,
and let ki be the length of fi for each i. Suppose that the “length
sequence” {k1, k2, . . . , kr} contains a even numbers and b odd numbers.
For instance, the length sequence of the permutation in part (a) is
{2, 3, 4, 3, 2}, so a = 3 and b = 2.

Among the following 4 statements exactly one is correct. Find the
correct statement and prove it.

(i) f is even if and only if a is even

(ii) f is even if and only if a is odd

(iii) f is even if and only if b is even

(iv) f is even if and only if b is odd

Problem 7: Before doing this problem, read the first 3 pages of online
lecture 21.

(a) Consider the permutations g = (1, 3, 5)(2, 4, 7, 8) and f = (1, 7, 5, 6)(2, 8, 9)(3, 4)
in S9. Compute gfg−1 (you should be able to write down the answer
right away).
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(b) Consider the permutations f = (1, 4, 6)(2, 3, 5) and h = (3, 4, 6)(1, 5, 7)
in S7. Find g ∈ S7 such that gfg−1 = h, g(1) = 1 and g(3) = 3.

(c) Let f = (1, 2, 3) considered as an element of S6, and let C(f) be the
centralizer of f in S6. Prove that |C(f)| = 18. Hint: Use the conju-
gation formula.

Bonus Problem: In Lecture 20 we briefly outlined the (start of the) proof
of the following theorem which appears as Theorem 18.5 in the online notes.

Theorem: Let p be an odd prime. Any group of order 2p is isomorphic to
Z2p or D2p (the group of isometries of a regular p-gon).

Here is a summary of what we said in class. Let G be a group of order 2p.
If G is cyclic, then G ∼= Z2p by Lecture 15, so assume from now on that G is
NOT cyclic.
By Corollary 18.1(A) for every x ∈ G we have o(x)|2p, so o(x) = 1, 2, p or
2p. Since we assume that G is not cyclic, o(x) cannot equal 2p, and of course
o(x) = 1 if and only if x = e. Thus o(x) = 2 or p for every non-identity
element x ∈ G.
Fact 1: G contains at least one element of order 2 and at least one element
of order p.
Assuming Fact 1 without proof for the moment, let x, y ∈ G be such that
o(x) = p and o(y) = 2, and let H = 〈x〉, the cyclic subgroup of G generated
by x. Then |H| = o(x) = p. Thus the index [G : H] = |G|

|H = 2p
p

= 2, so H
is normal in G. Since x ∈ H, by the conjugation criterion of normality we
must have yxy−1 ∈ H, so

yxy−1 = xk for some 0 ≤ k ≤ p− 1. (∗ ∗ ∗)

Now the actual problem:

(a) Prove Fact 1. Hint: To prove the existence of an element of order 2
let S = {g ∈ G : g = g−1} and argue that |S| is even. Then prove
the existence of an element of order p by contradiction. Assume there
is no such element. Then every non-identity element has order 2, so
g2 = e for all g ∈ G. By HW#6.1 this implies that G is abelian.
Now choose any two non-identity elements a, b ∈ G, and let H be
the smallest subgroup of G containing them. Argue that |H| = 4
(using both commutativity of G and the identity g2 = e) and reach a
contradiction with Lagrange theorem.

(b) Prove that in the equation (***) above k = 1 or k = p − 1. Hint:
Conjugate both sides of (***) by y and use the obtained equation and
(***) again to show that xk2 = x.
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(c) Prove that if k = 1 (which means that x and y commute), the element
xy has order 2p which contradicts the assumption that G is not cyclic.

In the remaining case k = p − 1 it is not hard to show that G ∼= D2p, but
this part of the proof is postponed until the next assignment.

Hint for Problem 3: Since H has index 2 in G, there are only two left
cosets, one of which is H itself – use this to describe the other coset. Then
do the same for right cosets. Now recall that we need to prove xH = Hx for
every x ∈ G. Consider two cases: x ∈ H and x 6∈ H.
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