27. Fields from quotient rings

In Lecture 26 we have shown that the quotient ring $\mathbb{R}[x]/(x^2+1)\mathbb{R}[x]$ is isomorphic to \mathbb{C} , so, in particular, it is a field, while $\mathbb{R}[x]/(x^2-1)\mathbb{R}[x]$ is not a field. The reason we did not get a field in the second case is clear: the polynomial $x^2 - 1$ is reducible, that is, has a non-trivial factorization $x^2-1 = (x-1)(x+1)$, and we have seen in the proof from Example 3 that the existence of factorization $(x-1)(x+1)$ is what prevents $\mathbb{R}[x]/(x^2-1)\mathbb{R}[x]$ from being a field. On the other hand, $x^2 + 1$ is irreducible, although it is not clear how to deduce that $\mathbb{R}[x]/(x^2+1)\mathbb{R}[x]$ is a field just from the irreducibility of $x^2 + 1$.

In this lecture we will settle the latter issue: we will show that if F is any field and $p \in F[x]$ is a polynomial, the the quotient ring $F[x]/pF[x]$ is a field $\iff p$ is irreducible.

27.1. Basic definitions.

Definition. Let F be a field and $p \in F[x]$ a polynomial with coefficients in F . Then p is called irreducible if

- (i) p is non-constant, or, equivalently, $deg(p) > 0$;
- (ii) p does not have non-trivial factorizations, that is, p cannot be written as $p = gh$ where $q, h \in F[x]$ and both g and h are non-constant.

Remark: Irreducible polynomials are direct counterparts of prime integers. The convention not to consider constant polynomials as irreducible corresponds to the convention not to consider 1 as a prime number. As we will see shortly, the analogy between prime integers and irreducible polynomials goes well beyond the definition.

Definition. Let F be a field and $p \in F[x]$ a polynomial with coefficients in F. Then p is called <u>monic</u> if the leading coefficient of p is equal to 1.

Next we define the greatest common divisor for polynomials.

Definition. Let F be a field and $f, g \in F[x]$ two polynomials. A polynomial $d \in F[x]$ is called the greatest common divisor (gcd) of f and g if the following conditions hold:

- (i) d is monic
- (ii) d divides both f and g

(iii) If $h \in F[x]$ is another polynomial which divides both f and q, then h divides d.

Remark: If $u, v \in F[x]$ are two polynomials, we say that v divides u if $u = vw$ for some polynomial $w \in F[x]$.

27.2. Main theorems.

2

Theorem 27.1 (GCD Theorem for polynomials). Let F be a field and $f, g \in F[x]$ two polynomials, not both of which are equal to 0. The following hold:

- (1) The greatest common divisor of f and g exists and unique. It is denoted by $gcd(f, q)$
- (2) There exist $u, v \in F[x]$ s.t. $gcd(f, g) = fu + gv$.
- (3) Let $I = \{p \in F[x] : p = fu + gv \text{ for some } u, v \in F[x]\}.$ Then $gcd(f, g)$ is the unique monic polynomial in I of smallest possible degree.
- (4) The set I from (3) is an ideal of $F[x]$ and coincides with $gcd(f, g)F[x]$, the principal ideal generated by $gcd(f, g)$.

Proof. The proof is analogous to the proof of GCD theorem for integers. The key tool in the proof is Theorem 26.1 (long division of polynomials). \Box

Theorem 27.2. Let F be a field and $f \in F[x]$. Let $R = F[x]$ and $I = fF[x]$. Then the quotient ring R/I is a field $\iff f$ is irreducible.

Remark: Theorem 27.2 is a direct analogue of the following theorem we proved in Lecture 8: if *n* is an integer, then $\mathbb{Z}_n \cong \mathbb{Z}/n\mathbb{Z}$ is a field $\iff n$ is prime.

Proof. As in the previous lecture, we use the shortcut notation $[k] = k + I$ for $k \in F[x]$.

The quotient ring R/I is always commutative and has unity (since $R =$ $F[x]$ is commutative and has unity). Therefore, R/I is a field if and only if

- (a) every nonzero element of R/I is invertible and
- (b) $[0] \neq [1]$ in R/I .

" \Leftarrow " Suppose that f is irreducible. Any nonzero element of R/I is equal to [k] for some $k \in F[x]$ which is not divisible by f. Since f is irreducible and f does not divide k, we must have $gcd(f, k) = 1$, and therefore, by Theorem 27.1(2) there exist $u, v \in F[x]$ s.t. $fu + kv = 1$.

Since $fu \in I$, we have $[fu] = [0]$. Therefore,

$$
[k][v] = [kv] = [1 - fu] = [1] - [fu] = [1] - [0] = [1],
$$

which shows that $[v]$ is the inverse of $[k]$, so $[k]$ is invertible. Thus, we verified condition (a).

Condition (b) is clear (by contradiction): if [0] was equal to [1], then 1 would have been a multiple of f , which is impossible since f is non-constant.

" \Rightarrow " We prove this by contrapositive. Suppose that f is not irreducible. Then by definition either f is constant or f is a product of two non-constant polynomials.

Case 1: $f = 0$. Then $I = \{0\}$, so $R/I \cong R = F[x]$, which is clearly not a field.

Case 2: f is a nonzero constant. Then it is easy to see that $I = R$, so $R/I = R/R$ is the zero ring, consisting of just one element (which is both [0] and [1]). Therefore, $[0] = [1]$, so condition (b) does not hold and R/I is not a field.

Case 3: $f = gh$ where g and h are non-constant polynomials. Then $deg(g)$ $\deg(f)$ and $\deg(h) < \deg(f)$, so g and h are not multiples of f and therefore $[q] \neq [0]$ and $[h] \neq [0]$. On the other hand, $[q][h] = [gh] = [f] = [0]$. Therefore, R/I has a zero divisor, namely [q], and therefore cannot be a \Box

27.3. Constructing finite fields of non-prime order. So far we only know how to construct finite fields of prime order: we know that if p is any prime, then \mathbb{Z}_p is a field of order p. Using quotients rings of the form discussed above, one can construct finite fields of any prime-power order, that is, order p^k where p is a prime and $k \geq 1$ is an arbitrary integer.

We shall explain in detail how to construct fields of order p^2 and then briefly state how to get fields of order p^k for any k.

Lemma 27.3. Let F be a field and $q \in F[x]$ a quadratic polynomial, that is, $q = ax^2 + bx + c$ where $a, b, c \in F$ and $a \neq 0$. Let $R = F[x]$ and $I = qR$. Then

- (i) For every element $[f] \in R/I$ there exist unique $a, b \in F$ s.t. $[f] =$ $[ax + b]$.
- (ii) Assume that $F = \mathbb{Z}_p$ for some prime p. Then $|R/I| = p^2$.

Proof. (i) is proved by the same argument as Lemma 26.1 from last time. (ii): by part (i), $|R/I|$ is equal to the number of polynomials $ax + b$, with $a, b \in \mathbb{Z}_p$. There are p choices for a and p choices for b, so overall there are p^2 choices. \Box

Combining Theorem 27.2 and Lemma 27.3, we deduce the following:

Corollary 27.4. Let p be a prime, and let $q = ax^2 + bx + c \in \mathbb{Z}_p[x]$ be a quadratic polynomial with coefficients in \mathbb{Z}_p . Assume that q is irreducible. Then $\mathbb{Z}_p[x]/q\mathbb{Z}_p[x]$ is a field of order p^2 .

So, to construct a field of order p^2 it suffices to find a quadratic irreducible polynomial in $\mathbb{Z}_p[x]$.

Lemma 27.5. Let F be a field and $q = ax^2 + bx + c \in F[x]$ a quadratic polynomial which does not have any roots in F . Then q is irreducible.

Proof. Assume that q is not irreducible. Since $deg(q) = 2 > 0$, q is nonconstant, so q has a factorization $q = gh$ with q and h non-constant. Then $deg(q) + deg(h) = deg(q) = 2$. Thus we must have $deg(q) = deg(h) = 1$, so $g = \alpha x + \beta$ and $h = \gamma x + \delta$ for some $\alpha, \beta, \gamma, \delta \in F$, with $\alpha, \gamma \neq 0$. Then

$$
q(-\alpha^{-1}\beta) = g(-\alpha^{-1}\beta)h(-\alpha^{-1}\beta) = 0 \cdot h(-\alpha^{-1}\beta) = 0,
$$

so q has a root $-\alpha^{-1}\beta \in F$, contrary to our assumption.

Thus, we are now reduced to showing that for every prime p , there exists an irreducible quadratic polynomial in $\mathbb{Z}_p[x]$.

Case 1: $p > 2$. As we proved in Lecture 9, there are precisely $\frac{p+1}{2}$ elements of \mathbb{Z}_p which are representable as a square. Since $\frac{p+1}{2} < p$, there exists $[d] \in \mathbb{Z}_p$, which is not a square. Hence $x^2 - [d]$ is a quadratic polynomial with no roots we were looking for.

Case 2: $p = 2$. We claim that $q = x^2 + x + [1] \in \mathbb{Z}_2[x]$ has no roots indeed, \mathbb{Z}_2 has only two elements $[0]$ and $[1]$, and by direct check we have $q([0]) = [1] \neq [0]$ and $q([1]) = 3 \cdot [1] = [1] \neq [0].$

Summarizing, we proved the following:

Theorem 27.6.

- (1) Let p be a prime, and let $[d] \in \mathbb{Z}_p$ be any element which is not a square. Then the quotient ring $\mathbb{Z}_p[x]/(x^2 - [d])\mathbb{Z}_p[x]$ is a field of order p^2 .
- (2) The quotient ring $\mathbb{Z}_2[x]/(x^2 + x + [1])\mathbb{Z}_2[x]$ is a field of order 4.

Exercise: Find a suitable value of [d] for $p = 3, 5$ and 7.

Finally, we briefly comment on the construction of a field of order p^k . By the same logic as above if $q = a_k x^k + \ldots + a_0 \in \mathbb{Z}_p[x]$ is an irreducible polynomial of degree k with coefficients in \mathbb{Z}_p , then $\mathbb{Z}_p[x]/q\mathbb{Z}_p[x]$ is a field of order p^k .

Even though there is no simple recipe which produces an irreducible polynomial of degree k in $\mathbb{Z}_p[x]$ for every prime p and integer $k \geq 1$, using a clever counting argument, one can show that such polynomial always exists (for every p and k). Thus, for every p and k there exists a field of order p^k .

Using some basic tools from linear algebra, one can show that these are the only possible orders of finite fields, that is, every finite field has order p^k for some prime p. For instance, there is no field of order 6.

Finally, using more advanced tools from field theory one shows that for every prime p and $k \geq 1$, a field of order p^k is unique up to isomorphism.