
27. Fields from quotient rings

In Lecture 26 we have shown that the quotient ring R[x]/(x2 + 1)R[x] is

isomorphic to C, so, in particular, it is a field, while R[x]/(x2 − 1)R[x] is

not a field. The reason we did not get a field in the second case is clear:

the polynomial x2 − 1 is reducible, that is, has a non-trivial factorization

x2−1 = (x−1)(x+1), and we have seen in the proof from Example 3 that the

existence of factorization (x− 1)(x+ 1) is what prevents R[x]/(x2 − 1)R[x]

from being a field. On the other hand, x2 + 1 is irreducible, although it

is not clear how to deduce that R[x]/(x2 + 1)R[x] is a field just from the

irreducibility of x2 + 1.

In this lecture we will settle the latter issue: we will show that if F is

any field and p ∈ F [x] is a polynomial, the the quotient ring F [x]/pF [x] is

a field ⇐⇒ p is irreducible.

27.1. Basic definitions.

Definition. Let F be a field and p ∈ F [x] a polynomial with coefficients in

F . Then p is called irreducible if

(i) p is non-constant, or, equivalently, deg(p) > 0;

(ii) p does not have non-trivial factorizations, that is, p cannot be written

as p = gh where g, h ∈ F [x] and both g and h are non-constant.

Remark: Irreducible polynomials are direct counterparts of prime inte-

gers. The convention not to consider constant polynomials as irreducible

corresponds to the convention not to consider 1 as a prime number. As we

will see shortly, the analogy between prime integers and irreducible polyno-

mials goes well beyond the definition.

Definition. Let F be a field and p ∈ F [x] a polynomial with coefficients in

F . Then p is called monic if the leading coefficient of p is equal to 1.

Next we define the greatest common divisor for polynomials.

Definition. Let F be a field and f, g ∈ F [x] two polynomials. A polynomial

d ∈ F [x] is called the greatest common divisor (gcd) of f and g if the

following conditions hold:

(i) d is monic

(ii) d divides both f and g
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(iii) If h ∈ F [x] is another polynomial which divides both f and g, then

h divides d.

Remark: If u, v ∈ F [x] are two polynomials, we say that v divides u if

u = vw for some polynomial w ∈ F [x].

27.2. Main theorems.

Theorem 27.1 (GCD Theorem for polynomials). Let F be a field and

f, g ∈ F [x] two polynomials, not both of which are equal to 0. The following

hold:

(1) The greatest common divisor of f and g exists and unique. It is

denoted by gcd(f, g)

(2) There exist u, v ∈ F [x] s.t. gcd(f, g) = fu+ gv.

(3) Let I = {p ∈ F [x] : p = fu + gv for some u, v ∈ F [x]}. Then

gcd(f, g) is the unique monic polynomial in I of smallest possible

degree.

(4) The set I from (3) is an ideal of F [x] and coincides with gcd(f, g)F [x],

the principal ideal generated by gcd(f, g).

Proof. The proof is analogous to the proof of GCD theorem for integers. The

key tool in the proof is Theorem 26.1 (long division of polynomials). �

Theorem 27.2. Let F be a field and f ∈ F [x]. Let R = F [x] and I = fF [x].

Then the quotient ring R/I is a field ⇐⇒ f is irreducible.

Remark: Theorem 27.2 is a direct analogue of the following theorem we

proved in Lecture 8: if n is an integer, then Zn
∼= Z/nZ is a field ⇐⇒ n is

prime.

Proof. As in the previous lecture, we use the shortcut notation [k] = k + I

for k ∈ F [x].

The quotient ring R/I is always commutative and has unity (since R =

F [x] is commutative and has unity). Therefore, R/I is a field if and only if

(a) every nonzero element of R/I is invertible and

(b) [0] 6= [1] in R/I.

“⇐” Suppose that f is irreducible. Any nonzero element of R/I is equal

to [k] for some k ∈ F [x] which is not divisible by f . Since f is irreducible

and f does not divide k, we must have gcd(f, k) = 1, and therefore, by

Theorem 27.1(2) there exist u, v ∈ F [x] s.t. fu+ kv = 1.

Since fu ∈ I, we have [fu] = [0]. Therefore,

[k][v] = [kv] = [1− fu] = [1]− [fu] = [1]− [0] = [1],



3

which shows that [v] is the inverse of [k], so [k] is invertible. Thus, we

verified condition (a).

Condition (b) is clear (by contradiction): if [0] was equal to [1], then 1 would

have been a multiple of f , which is impossible since f is non-constant.

“⇒” We prove this by contrapositive. Suppose that f is not irreducible.

Then by definition either f is constant or f is a product of two non-constant

polynomials.

Case 1: f = 0. Then I = {0}, so R/I ∼= R = F [x], which is clearly not a

field.

Case 2: f is a nonzero constant. Then it is easy to see that I = R, so

R/I = R/R is the zero ring, consisting of just one element (which is both

[0] and [1]). Therefore, [0] = [1], so condition (b) does not hold and R/I is

not a field.

Case 3: f = gh where g and h are non-constant polynomials. Then deg(g) <

deg(f) and deg(h) < deg(f), so g and h are not multiples of f and therefore

[g] 6= [0] and [h] 6= [0]. On the other hand, [g][h] = [gh] = [f ] = [0].

Therefore, R/I has a zero divisor, namely [g], and therefore cannot be a

field. �

27.3. Constructing finite fields of non-prime order. So far we only

know how to construct finite fields of prime order: we know that if p is

any prime, then Zp is a field of order p. Using quotients rings of the form

discussed above, one can construct finite fields of any prime-power order,

that is, order pk where p is a prime and k ≥ 1 is an arbitrary integer.

We shall explain in detail how to construct fields of order p2 and then briefly

state how to get fields of order pk for any k.

Lemma 27.3. Let F be a field and q ∈ F [x] a quadratic polynomial, that

is, q = ax2 + bx+ c where a, b, c ∈ F and a 6= 0. Let R = F [x] and I = qR.

Then

(i) For every element [f ] ∈ R/I there exist unique a, b ∈ F s.t. [f ] =

[ax+ b].

(ii) Assume that F = Zp for some prime p. Then |R/I| = p2.

Proof. (i) is proved by the same argument as Lemma 26.1 from last time.

(ii): by part (i), |R/I| is equal to the number of polynomials ax + b, with

a, b ∈ Zp. There are p choices for a and p choices for b, so overall there are

p2 choices. �

Combining Theorem 27.2 and Lemma 27.3, we deduce the following:
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Corollary 27.4. Let p be a prime, and let q = ax2 + bx + c ∈ Zp[x] be a

quadratic polynomial with coefficients in Zp. Assume that q is irreducible.

Then Zp[x]/qZp[x] is a field of order p2.

So, to construct a field of order p2 it suffices to find a quadratic irreducible

polynomial in Zp[x].

Lemma 27.5. Let F be a field and q = ax2 + bx + c ∈ F [x] a quadratic

polynomial which does not have any roots in F . Then q is irreducible.

Proof. Assume that q is not irreducible. Since deg(q) = 2 > 0, q is non-

constant, so q has a factorization q = gh with g and h non-constant. Then

deg(g) + deg(h) = deg(q) = 2. Thus we must have deg(g) = deg(h) = 1, so

g = αx+ β and h = γx+ δ for some α, β, γ, δ ∈ F , with α, γ 6= 0. Then

q(−α−1β) = g(−α−1β)h(−α−1β) = 0 · h(−α−1β) = 0,

so q has a root −α−1β ∈ F , contrary to our assumption. �

Thus, we are now reduced to showing that for every prime p, there exists

an irreducible quadratic polynomial in Zp[x].

Case 1: p > 2. As we proved in Lecture 9, there are precisely p+1
2 elements of

Zp which are representable as a square. Since p+1
2 < p, there exists [d] ∈ Zp,

which is not a square. Hence x2 − [d] is a quadratic polynomial with no

roots we were looking for.

Case 2: p = 2. We claim that q = x2 + x + [1] ∈ Z2[x] has no roots –

indeed, Z2 has only two elements [0] and [1], and by direct check we have

q([0]) = [1] 6= [0] and q([1]) = 3 · [1] = [1] 6= [0].

Summarizing, we proved the following:

Theorem 27.6.

(1) Let p be a prime, and let [d] ∈ Zp be any element which is not a

square. Then the quotient ring Zp[x]/(x2 − [d])Zp[x] is a field of

order p2.

(2) The quotient ring Z2[x]/(x2 + x+ [1])Z2[x] is a field of order 4.

Exercise: Find a suitable value of [d] for p = 3, 5 and 7.

Finally, we briefly comment on the construction of a field of order pk. By

the same logic as above if q = akx
k + . . . + a0 ∈ Zp[x] is an irreducible

polynomial of degree k with coefficients in Zp, then Zp[x]/qZp[x] is a field

of order pk.

Even though there is no simple recipe which produces an irreducible

polynomial of degree k in Zp[x] for every prime p and integer k ≥ 1, using a
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clever counting argument, one can show that such polynomial always exists

(for every p and k). Thus, for every p and k there exists a field of order pk.

Using some basic tools from linear algebra, one can show that these are

the only possible orders of finite fields, that is, every finite field has order pk

for some prime p. For instance, there is no field of order 6.

Finally, using more advanced tools from field theory one shows that for

every prime p and k ≥ 1, a field of order pk is unique up to isomorphism.


