
23. Quotient groups II

23.1. Proof of the fundamental theorem of homomorphisms (FTH).
We start by recalling the statement of FTH introduced last time.

Theorem (FTH). Let G, H be groups and ϕ : G → H a homomorphism.
Then

G/Ker ϕ ∼= ϕ(G). (∗ ∗ ∗)

Proof. Let K = Kerϕ and define the map Φ : G/K → ϕ(G) by

Φ(gK) = ϕ(g) for g ∈ G.

We claim that Φ is a well defined mapping and that Φ is an isomorphism.
Thus we need to check the following four conditions:

(i) Φ is well defined
(ii) Φ is injective
(iii) Φ is surjective
(iv) Φ is a homomorphism

For (i) we need to prove the implication “g1K = g2K ⇒ Φ(g1K) = Φ(g2K).”

So, assume that g1K = g2K for some g1, g2 ∈ G. Then g−1
1 g2 ∈ K by

Theorem 19.2, so ϕ(g−1
1 g2) = eH (recall that K = Kerϕ). Since ϕ(g−1

1 g2) =
ϕ(g1)−1ϕ(g2), we get ϕ(g1)−1ϕ(g2) = eH . Thus, ϕ(g1) = ϕ(g2), and so
Φ(g1K) = Φ(g2K), as desired.

For (ii) we need to prove that “Φ(g1K) = Φ(g2K) ⇒ g1K = g2K.” This
is done by taking the argument in the proof of (i) and reversing all the
implication arrows.

(iii) First note that by construction Codomain(Φ) = ϕ(G). Thus, for
surjectivity of Φ we need to show that Range(Φ) = Φ(G/K) is equal to
ϕ(G). This is clear since

Φ(G/K) = {Φ(gK) : g ∈ G} = {ϕ(g) : g ∈ G} = ϕ(G).

(iv) Finally, for any g1, g2 ∈ G we have

Φ(g1K · g2K) = Φ(g1g2K) = ϕ(g1g2) = ϕ(g1)ϕ(g2) = Φ(g1K)Φ(g2K)

where the first equality holds by the definition of product in quotient groups.
Thus, Φ is a homomorphism.

So, we constructed an isomorphism Φ : G/Ker ϕ → ϕ(G), and thus G/Ker ϕ

is isomorphic to ϕ(G). �
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23.2. Applications of FTH. In most applications one uses a special case
of FTH stated last time as Corollary 22.5:

If ϕ : G → H is a surjective homomorphism, then G/Ker ϕ ∼= H. (***)

Typically this result is being applied as follows. We are given a group G,
a normal subgroup K and another group H (unrelated to G), and we are
asked to prove that G/K ∼= H. By (***) to prove that G/K ∼= H it
suffices to find a surjective homomorphism ϕ : G → H such that
Ker ϕ = K.

Example 1: Let n ≥ 2 be an integer. Prove that

Z/nZ ∼= Zn.

We already established this isomorphism in Lecture 22 (see Corollary 22.3),
so the point of this example is mostly to illustrate how FTH works.

In this example G = Z, H = Zn and K = nZ. Define the map ϕ :
Z → Zn by ϕ(x) = [x]n. It is straightforward to check that ϕ is a surjective
homomorphism (anyway, this was verified in Lecture 15). We have

Ker ϕ = {x ∈ Z : [x]n = [0]n} = {x ∈ Z : x = nk for some k ∈ Z} = nZ = K.

Thus, by FTH (or, more precisely, by (***)) we have Z/nZ ∼= Zn.

Example 2: Let U be the group of rotations of the unit circle in R2. Prove
that

U ∼= R/Z.

Remark: As usual, by R we denote the group of reals (with addition) and
Z is thought of as a subgroup of R.

In this example G = R, H = U and K = Z. By definition, U = {rα : α ∈ R},
where rα is the counterclockwise rotation by α radians. Clearly, the group
operation on U is given by rαrβ = rα+β for all α, β ∈ R.

Define the map ϕ : R → U by

ϕ(x) = r2πx for all x ∈ R.

Then ϕ is a homomorphism since

ϕ(x)ϕ(y) = r2πxr2πy = r2π(x+y) = ϕ(x + y),

and ϕ is surjective, since any element of U is equal to rα for some α ∈ R,
and any α ∈ R can be written as 2πx for some x ∈ R (namely x = α/2π).

Finally, Kerϕ consists of all x ∈ R such that r2πx is the trivial rotation. But
a rotation by the angle of α radians is trivial if and only if α is an integer
multiple of 2π. Thus,

x ∈ Ker ϕ ⇐⇒ 2πx = 2πk for some k ∈ Z ⇐⇒ x ∈ Z.
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Thus, Ker ϕ = Z = K, as desired, and again by FTH we conclude that

R/Z ∼= U.

Note that in this example we managed to determine the isomorphism class
of the quotient group R/Z without having to “visualize” it. We will return
to the latter problem later in this lecture.

Example 3: Prove that the alternating group An (the subgroup of even
permutations in Sn) has index 2 in Sn.

This can be proved in a number of different ways; using FTH is just one of
them. To prove that [Sn : An] = 2 we will construct a surjective homomor-
phism ϕ : Sn → Z2 with Ker ϕ = An. If this is achieved, it would follow that
Sn/An

∼= Z2, so |Sn/An| = |Z2| = 2, and therefore [Sn : An] = |Sn/An| = 2,
as desired.

Define ϕ : Sn → Z2 by

ϕ(f) =
{

[0] if f is even
[1] if f is odd.

By construction ϕ is surjective. To prove that ϕ is a homomorphism we
need to show that

ϕ(f) + ϕ(g) = ϕ(fg) for all f, g ∈ Sn (∗ ∗ ∗)

Recall (Proposition A.3 in the notes on even/odd permutations) that

if f and g are both even or both odd, then fg is even
if f is even and g is odd, or if f is odd and g is even, then fg is odd.

Let us consider 4 cases.

1. f and g are both even. Then fg is also even. So, ϕ(f) = ϕ(g) =
ϕ(fg) = [0]. Since [0] + [0] = [0], (***) holds.

2. f is even, and g is odd. Then fg is odd. So, ϕ(f)+ϕ(g) = [0]+[1] =
[1] = ϕ(fg).

3. f is odd, and g is even. This case is analogous to Case 2.
4. f and g are both odd. Then fg is even, so ϕ(f) + ϕ(g) = [1] + [1] =

[0] = ϕ(fg).

Thus, we verified that ϕ is a homomorphism. Finally, Kerϕ = {f ∈ Sn :
ϕ(f) = [0]2} is the set of all even permutations, so Kerϕ = An (by definition
of An).

23.3. Transversals.

Definition. Let G be a group and H a subgroup of G. A subset T of G is
called a transversal of H in G if T contains PRECISELY one element from
each left coset with respect to H.
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Example: Let G = Z and H = 3Z. Then there are 3 left cosets with respect
to H: 0 + H, 1 + H and 2 + H, so the set T = {0, 1, 2} is a transversal.
Another transversal is {2, 7, 9}. In general, in this example, a set T will be
a transversal ⇐⇒ |T | = 3 and T contains one integer divisible by 3, one
integer congruent to 1 mod 3 and one integer congruent to 2 mod 3.

If T is a transversal of H in G, then by definition |T | = |G/H|, that is,
T has the same size as the quotient set G/H. In fact, there is a natural
bijective mapping T → G/H given by t 7→ tH.

Assume now that H is normal, so that G/H is a group. Then we can define
a binary operation ∗ on T so that (T, ∗) is a group which is isomorphic to
G/H. This can be done as follows: for each g ∈ G denote by ḡ the unique
element of T which lies in the coset gH. Note that ḡ = g ⇐⇒ g ∈ T . Now
define a binary operation ∗ on T by setting

t1 ∗ t2 = t1t2 for all t1, t2 ∈ T (!!!)

The following proposition is left as an exercise:

Proposition 23.1. (T, ∗) is a group, which is isomorphic to G/H via the
map ι : T → G/H given by ι(t) = tH.

We can now use Proposition 23.1 to give a new “interpretation” of the cylcic
groups Zn and also better visualize the quotient group R/Z.

Example A: Let n ≥ 2 be an integer. We already proved that the quotient
group Z/nZ is isomorphic to Zn.

Let G = Z, H = nZ and T = {0, 1, . . . , n−1}. Then T is clearly a transversal
of H in G, and in the above notations for any x ∈ Z we have

x = the remainder of dividing x by n.

Thus, by Proposition 23.1, G/H = Z/nZ is isomorphic to the following
group which we denote by Z′

n:

As a set Z′
n = {0, 1, . . . , n− 1}, the set of integers from 0 to n− 1. The

group operation +′ on Z′
n is defined by

x +′ y = the remainder of dividing x + y by n.

From this description you can see that Z′
n is essentially the same group as

Zn except for minor notational differences. In fact, if you were introduced
to congruence classes before this course, Zn may have been defined precisely
as the group Z′

n above.

Example B: Now let G = R (with addition) and H = Z. Let

T = [0, 1) = {x ∈ R : 0 ≤ x < 1} ⊂ R.
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We claim that T is a transversal of H in G. Indeed, the cosets with respect
to H have the form x + Z, with x ∈ R, and it is easy to see that x + Z will
contain precisely one element of T , namely the fractional part of x, denoted
by {x}. For instance, let x = 2.1. Then

x + Z = {. . . ,−0.9, 0.1, 1.1, 2.1, 3.1, . . .},

and the unique number in (x + Z) ∩ T is 0.1 = {2.1}.

Thus, T is a transversal of Z in R, and in the above notations for every
x ∈ R we have x = {x}. Applying Proposition 23.1, we get the following
conclusion: introduce the group operation +′ on T = [0, 1) by

x +′ y = {x + y}.

Then (T,+′) is isomorphic to R/Z. Note that the operation +′ on T can be
more explicitly described as follows: for every x, y ∈ T we have

x +′ y =
{

x + y if x + y < 1
x + y − 1 if x + y ≥ 1.

(we have only two case above because if x, y ∈ T , then 0 ≤ x, y < 1, so
0 ≤ x + y < 2).

Let us go back to the general case. Let G be a group, H a normal sub-
group, and suppose that we found a transversal T which itself is a subgroup
of G. Then for any t1, t2 ∈ T we have t1t2 ∈ T , so t1t2 = t1t2. Therefore,
the formula (!!!) for the operation ∗ on T simplifies to t1 ∗ t2 = t1t2. In other
words, in this case the newly defined operation ∗ on T coincides with the
group operation on G restricted to T . Therefore, we obtain the following
useful result as a consequence of Proposition 23.1.

Corollary 23.2. Let G be a group and H a normal subgroup of G. Assume
that there exists a transversal T of H in G such that T is also a subgroup.
Then the quotient group G/H is isomorphic to T (considered as a subgroup
of G).

We finish with two examples – in the first one there will exist a transversal
which is a subgroup, and in the second one there will be no such transversal.

Example 1: Let G = Z6 and H = 〈[3]〉 = {[0], [3]}. There are three cosets
with respect to H: H = {[0], [3]}, [1]+H = {[1], [4]} and [2]+H = {[2], [5]}.
The simplest possible transversal {[0], [1], [2]} is not a subgroup, but there
is another one that works: T = {[0], [2], [4]} is also a transversal, and it is
clearly a subgroup (e.g. because it coincides with 〈[2]〉, the cyclic subgroup
generated by [2]).

Example 2: Now let G = Z and H = 3Z. We claim that no transversal
can be a subgroup here. Indeed, in this example, as we saw earlier, every
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transversal has 3 elements. On the other hand, we know (see Homework#6,
Problem 9) that any subgroup of Z is equal to nZ for some n, and

|nZ| =
{
∞ if n 6= 0
1 if n = 0

In particular, Z has no subgroups of order 3, so none of them could be a
transversal of H = 3Z.


