Homework #2. Due Thursday, September 9th, in class Reading:

1. For this assignment: Sections 2.3 and 2.4 (up to Definition 2.13).

2. Before the class on Tuesday, Sep 7th: the rest of Section 2.4. Before the class on Thursday, Sep 9th: Section 2.5.

Problems:

Problem 1: Let $a, b, c \in \mathbb{Z}$ such that $c \mid a$ and $c \mid b$. Prove directly from definition of divisibility that $c \mid (ma + nb)$ for any $m, n \in \mathbb{Z}$.

Problem 2 (practice): (a) Prove that $2 \mid n(n+1)$ for any $n \in \mathbb{Z}$.

(b) Prove that $3 \mid n(n+1)(n+2)$ for any $n \in \mathbb{Z}$.

(c) Formulate and prove suitable generalization of (a) and (b).

Hint: For part (a): consider 2 cases; for part (b) consider 3 cases.

Problem 3: Let $a, b, c \in \mathbb{Z}$ such that $c \mid ab$. Is it always true that $c \mid a$ or $c \mid b$? If the statement is true for all possible values of a, b, c, prove it; otherwise give a counterexample.

Problem 4: (a) Fix $b \in \mathbb{Z}$, and let $f : \mathbb{Z}^+ \to \mathbb{Z}$ be a function such that (i) $b \mid f(1)$

(ii) $b \mid (f(n) - f(n-1))$ for any integer $n \ge 2$.

Prove by induction that

$$b \mid f(n)$$
 for any $n \in \mathbb{Z}^+$.

Note: You may use properties of divisibility proved in the book, in class or earlier in this homework.

(b) Prove that $8 \mid (9^n - 1)$ for any $n \in \mathbb{Z}^+$ by applying part (a) to a suitable $b \in \mathbb{Z}$ and suitable function f (we did this problem in class in a different way).

Problem 5: Let a = 382 and b = 26. Use Euclidean algorithm to compute gcd(a, b) and find $u, v \in \mathbb{Z}$ such that au + bv = gcd(a, b).

Problem 6: Prove the following lemma, justifying the Euclidean algorithm: **Lemma:** Let $a, b \in \mathbb{Z}$ with b > 0. Divide a by b with remainder: a = bq + r. Then gcd(a, b) = gcd(b, r). **Hint:** Show that the pairs $\{a, b\}$ and $\{b, r\}$ have the same set of common divisors, that is,

(i) if $c \mid a$ and $c \mid b$, then $c \mid r$ (and so c divides both b and r)

(ii) if $c \mid b$ and $c \mid r$, then $c \mid a$ (and so c divides both a and b).

Problem 7: Let $a, b \in \mathbb{Z}$, not both 0, let d = gcd(a, b), and let

 $S = \{ x \in \mathbb{Z} : x = am + bn \text{ for some } m, n \in \mathbb{Z} \}.$

By GCD Theorem, d is the smallest positive element of S, and the natural problem is to describe all elements of S.

(a) Prove that if k is any element of S, then $d \mid k$. Hint: Problem 1.

(b) Prove that if $k \in \mathbb{Z}$ and $d \mid k$, then $k \in S$. **Hint:** Use GCD Theorem.

(c) Deduce from (a) and (b) that elements of S are precisely integer multiples of d.

Problem 8: Let n > 1 be a non-prime integer.

(a) Prove that n = kl for some integers k, l > 1 (this follows very easily from the definition of a prime number).

(b) Prove that n has a divisor d such that $1 < d \le \sqrt{n}$. Hint: Prove this by contradiction using (a).

Binomial theorem (bonus, strongly recommended). Given $n, k \in \mathbb{Z}$ with $0 \le k \le n$, define the binomial coefficient $\binom{n}{k}$ by

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

(recall that 0! = 1).

(a) Prove that $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$ for any $1 \le k \le n$ (direct computation). (b) Now prove the binomial theorem: for every $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k} = \binom{n}{0} a^{n} + \binom{n}{1} a^{n-1} b + \ldots + \binom{n}{n-1} a b^{n-1} + \binom{n}{n} b^{n}.$$

Hint: Use induction on *n*. For induction step write $(a+b)^n = (a+b)^{n-1} \cdot (a+b)$ and use part (a).