Homework #12. Due Tuesday, December 7th Reading:

For this assignment: Sections 5.1, 6.1, 6.2.

Problems:

Problem 1: Let R be a commutative ring with 1 and I an ideal of R.

- (a) Suppose that $1 \in I$. Prove that $I = R$.
- (b) Suppose that R is a field. Prove that $I = R$ or $I = \{0\}$. Hint: Reduce (b) to (a).

Problem 2: Let R be a commutative ring with 1.

- (a) (practice) Fix $a \in R$, and let $I = aR$, the principal ideal of R generated by a. Prove that I is the minimal ideal of R containing a.
- (b) Now fix two elements $a, b \in R$, and let

$$
I = aR + bR = \{x \in R : x = ar + bs \text{ for some } r, s \in R\}.
$$

Prove that I is the minimal ideal of R containing a and b.

Hint: First prove that I is an ideal of R containing a and b and then show that if J is any ideal of R containing a and b , then J contains I .

Problem 3: Let $a, b \in \mathbb{Z}$, and let I be the minimal ideal of \mathbb{Z} containing both a and b. Use Problem 2 and one of the problems from Homework#2 to prove that $I = d\mathbb{Z}$ where $d = \gcd(a, b)$. State your argument clearly.

Remark: If a_1, \ldots, a_k are elements of a ring R, the minimal ideal of R containing all these elements is commonly denoted by (a_1, \ldots, a_k) . With this notation, the result of Problem 3 maybe restated as $(a, b) = (d)$ where $d = \text{gcd}(a, b)$. This explains why the greatest common divisor of a and b is often denoted simply by (a, b) .

Problem 4: Let $R = \mathbb{Z}[x]$ (polynomials with coefficients in \mathbb{Z}), and let

$$
I = \{a_0 + a_1x + \dots + a_nx^n : \text{ each } a_i \in \mathbb{Z} \text{ and } a_0 \text{ is even. }\}
$$

(a) Use Problem 2 to prove that I is the minimal ideal of R containing 2 and x .

- (b) Prove that I is a non-principal ideal, that is, $I \neq fR$ for any $f \in R$. Hint: Consider three cases.
	- (i) f is a non-constant polynomial
	- (ii) f is an even constant
	- (iii) f is an odd constant.

Problem 5 (practice): Consider the quotient group \mathbb{Q}/\mathbb{Z} . Recall that the group operation on \mathbb{Q}/\mathbb{Z} is denoted by $+$ and defined by

$$
(a + \mathbb{Z}) + (b + \mathbb{Z}) = (a + b) + \mathbb{Z}.
$$

Suppose now we want to turn \mathbb{Q}/\mathbb{Z} into a ring and define multiplication on \mathbb{Q}/\mathbb{Z} by

$$
(a+\mathbb{Z})\cdot (b+\mathbb{Z})=ab+\mathbb{Z}.
$$

Show that such multiplication will NOT be well defined.

Bonus Problem: Give a different proof of the isomorphism

$$
\mathbb{R}[x]/(x^2+1)\mathbb{R}[x] \cong \mathbb{C}
$$

using FTH for rings. See Lecture 26 for a hint on how to start.