
Homework #11. Due Thursday, December 2nd

Reading:

1. For this assignment: Sections 4.6 and 5.1 + online notes from Lectures 22
and 23.

2. For the class on Nov 23: Section 5.1 (rings)
3. For the class on Nov 30: Section 6.1 (ideals)
4. For the class on Dec 2: Section 6.1 (quotient rings)

Problems:

Problem 1: Let G = D8, the octic group, and H = {r0, r2}. Describe the
elements of the quotient group G/H and compute the multiplication table
for G/H. Show details of your computation (recall that we did a sample
computations in class). Make sure that in the multiplication table you do
not use multiple names for the same element of G/H.

Problem 2: Let G = Z12 and H = 〈[4]〉, the cyclic subgroup generated by
[4].

(a) Describe the elements of the quotient group G/H and compute the
“multiplication” table for G/H (the word “multiplication” is in quotes
because the group operation in G is addition).

(b) Deduce from your computation in (a) that G/H is isomorphic to Z4.

(c) Now give a different proof of the isomorphism G/H ∼= Z4 using FTH.

Problem 3: Let A and B be a groups and G = A×B their direct product.
Let Ã = {(a, eB) : a ∈ A} be the subset of G consisting of all elements whose
second component is identity. Use FTH to prove that Ã is a normal subgroup
of G and the quotient group G/Ã is isomorphic to B.

Problem 4: This problem deals with the group Q/Z, the quotient of the
group (Q, +) of rationals with addition by the subgroup of integers.

(a) Prove that every element of Q/Z has finite order.

(b) Find all elements of order 12 in Q/Z and prove your answer.

Warning: Since elements of quotient groups are defined as cosets, it is com-
mon to mispinterpret the notion of the order for such element as the size
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(cardinality) of the corresponding coset. This is NOT the right interpreta-
tion. By the order here we mean the usual notion of the order of group
elements (the minimal n such that ...).

Problem 5: Before doing this problem read the full subsection on transver-
sals in the online version of Section 23 (we only discussed part of it in class).

In each of the following examples, find a transversal of H in G. Also
decide whether there exists a transversal which is a subgroup: if yes, exhibit
such a transversal; if not, prove why.

(a) G = Z6, H = 〈[2]〉.

(b) G = Z9, H = 〈[3]〉.

(c) G = D8, H = {r0, r1, r2, r3}, the rotation subgroup.

(d) G = D8, H = {r0, r2}. Hint: Use classification of subgroups of D8.

Problem 6:

(a) Let Z[i] be the set of all complex numbers of the form a + bi with
a, b ∈ Z. Prove that Z[i] is a subring of C. This ring is called Gaussian
integers.

(b) (optional) Let Q[i] be the set of all complex numbers of the form a+ bi
with a, b ∈ Q. Prove that Q[i] is a subfield of C. Note: If F is a field
and S is a subset of F , to prove that S is a subfield you need to check
that S is a subring and, in addition, S contains multiplicative inverses
of all its nonzero elements (for any nonzero s ∈ S, the mupltiplicative
inverse s−1 exists in F because F is a field, but you have to show that
s−1 actually lies in S).

Problem 7: Let S = {a + b
√

2 + c
√

3 : a, b, c ∈ Z}.

(a) Let T be a subring of R which contains 1 and
√

2 and
√

3. Prove that
T contains all elements of S.

(b) Prove that S is NOT a subring of R.

(c) Find the minimal subring of R which contains all elements of S. First
guess what the answer should be, call your answer S1 (step 1), then
prove that S1 is a subring (step 2), and finally prove that S1 is the
minimal subring containg S (step 3).

Note: Unlike the example we did in class, your argument in step 1 will likely
not be completely rigorous, so some work will have to be done in step 3.

Hint: Your proof in part (b) should suggest which elements must be added
to S to get a subring.

2



Problem 8: Let R = R[x], the ring of polynomials with real coefficients.

(a) Let S0 = {a0 + a2x
2 + a3x

3 + . . . + anx
n : ai ∈ R for each i} be the set

of all polynomials with zero coefficient of x. Prove that S0 is a subring
of R.

(b) Let T be any subring of R containing 1, x2 and x3. Prove that xk ∈ T
for any k ≥ 2.

(c) Now let S be the minimal subring of R containing 1, x2 and x3. De-
scribe S explicitly. Is S = S0?

Bonus Problem: Let V4 be the Klein four group inside S4, that is,

V4 = {e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.

Recall that we proved in Lecture 21 that V4 is a normal subgroup of S4. Prove
that S4/V4

∼= S3 without using classification of groups of order 6. Hint: FTH
is probably not the best way to go here; however, there is another result from
Lecture 23 that will help a lot.
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