
13. A note on writing negations

Statements in mathematical analysis typically involve lots of quantifiers,

that is, symbols ∀ (for all) and ∃ (there exists). If you are asked to formu-

late a negation of a statement of this kind and you do not feel completely

comfortable with negations, it may be a good idea to proceed one step at a

time using the following basic principles:

(a) Suppose the statement P we want to negate has the form

P = (∀t ∈ A Q(t))

where A is some set and Q(t) is a substatement depending on t. The

statement P asserts that Q(t) should be true for ALL t ∈ A. Hence

its negation ¬P should say that there is AT LEAST ONE t ∈ A

such that Q(t) is false. In other words,

¬P = ¬(∀t ∈ A Q(x)) = (∃t ∈ A ¬Q(t))

(b) Suppose now the statement P has the form

P = (∃t ∈ A Q(t)).

Now P asserts that Q(t) should be true for AT LEAST ONE t ∈ A.

Hence its negation ¬P should say that Q(t) is false for ALL t ∈ A.

In other words,

¬P = ¬(∃t ∈ A Q(t)) = (∀t ∈ A ¬Q(t))

Let us now use these principles to see how to negate the statement lim
x→a

f(x) =

L (where a, L ∈ R and f is some real function defined near a ∈ R); recall that

this negation was needed for the proof of reverse direction of Theorem 13.4

from class.

So, the original statement P is P = (lim
x→a

f(x) = L) which using the

definition of limit becomes

P = (∀ε > 0 ∃δ > 0 s.t. |f(x)− L| < a for all x s.t. 0 < |x− a| < δ).

To apply the above negation principles in this case, we need to slightly

rephrase P , for which it is convenient to introduce the following notations:

let R>0 denote the set of all positive real numbers, and given a, δ ∈ R, let

B◦δ (a) = {x ∈ R : 0 < |x − a| < δ} = (a − δ, a + δ) \ {a}. Then we can

rephrase P as follows:

P = (∀ε ∈ R>0 ∃δ ∈ R>0 s.t. ∀x ∈ B◦δ (a) we have |f(x)− L| < ε).
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Note that P = (∀ε ∈ R>0 Q(ε)) where

Q(ε) = (∃δ ∈ R>0 s.t. ∀x ∈ B◦δ (a) we have |f(x)− L| < ε).

Hence by principle (a) we have ¬P = (∃ε ∈ R>0 ¬Q(ε)). Similarly, we can

negate Q(ε) using principle (b). We get ¬Q(ε) = (∀δ ∈ R>0 ¬R(x)) where

R(x) = (∀x ∈ B◦δ (a) we have |f(x)− L| < ε).

Finally, again by principle (a) we have

¬R(x) = (∃x ∈ B◦δ (a) s.t. ¬(|f(x)− L| < ε)).

The statement |f(x) − L| < ε does not involve any quantifiers, and we can

write its negation directly: ¬(|f(x)− L| < ε) = (|f(x)− L| ≥ ε).
Putting everything together, we can now write down the negation of the

original statement P :

¬P = (∃ε ∈ R>0 s.t. ∀δ ∈ R>0 ∃x ∈ B◦δ (a) s.t. |f(x)− L| ≥ ε).

Now that the negation has been formulated we can get rid of all the extra

notations and rephrase ¬(P ) as follows:

¬P = (∃ε > 0 s.t. ∀δ > 0∃x s.t. 0 < |x− a| < δ and |f(x)− L| ≥ ε).

Note that the appearance of the expression “there exists x ...” in cer-

tain statement P does not imply that the negation ¬(P ) will involve the

expression ”for all x”. Consider the following example.

Example 1. Suppose A is a subset of Z (integers) and P is the following

statement:

∀x ∈ A there exist at most 3 primes p s.t. p divides x.

By principle (a), we have ¬P = (∃x ∈ A s.t. ¬Q(x)) where Q(x) is the

statement “there exist at most 3 primes p s.t. p divides x”. However,

we cannot use principle (b) to form negation of Q(x) since Q(x) does not

say that there exists a prime p with certain property; in fact, it tells us

almost the opposite: there are at most 3 (possibly 0) primes p with certain

property. Hint: if you do not see how to formulate the negation of Q(x),

try to rephrase Q(x) without using the expression “there exists”.


