
Homework #8. Due Thursday, March 26th, in class

Reading:

1. For this assignment: 3.3, 3.4 + class notes (Lectures 15-16).

2. For next week’s classes: 4.1 (definition of derivative), 4.2 (differentia-

bility rules) and 4.3 (the mean value theorem). I am not sure how fast we

will proceed, but I hope that we will at least start talking about the mean

value theorem.

Problems:

Problem 1: In each part of this problem prove that the given function f

is uniformly continuous on the given set E directly from definition and give

an explicit formula for δ in terms of ε.

(a) f(x) = x3, E = [1, 2]

(b) f(x) =
√
x, E = [0,∞).

Hint: In (b), once you fixed ε > 0, in order to estimate |f(x) − f(a)|,
consider two cases: (i) x < ε2 and a < ε2 and (ii) x ≥ ε2 or a ≥ ε2, and use

multiplication by the conjugate in case (ii).

Problem 2: Let f(x) = 1
x . Prove that f is NOT uniformly continuous

on (0, 1), again directly from the definition.

Problem 3: Let E be a subset of R, and assume that functions f, g :

E → R are both uniformly continuous on E.

(a) Prove that f + g is uniformly continuous on E

(b) Assume that f and g are bounded on E. Prove that fg is uniformly

continuous on E.

(c) Give an example showing that in general fg may not be uniformly

continuous on E (if we do not assume that f and g are bounded)

(d) (bonus) Give an example where f is bounded, g is unbounded and

fg is not uniformly continuous on E (of course, such an example

would also work for (c), but there is a much easier example where

both functions are unbounded).

Hint: (a) and (b) can be proved similarly to sum and product rules for

limits of sequences.

Problem 4: This problem outlines an alternative proof of the Interme-

diate Value Theorem which uses uniform continuity. Let f : [a, b] → R be

a continuous function s.t. f(a) < 0 and f(b) > 0. We want to prove that
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there exists c ∈ (a, b) s.t. f(c) = 0. Assume, by way of contradiction, that

there is no such c, that is, f(x) 6= 0 for all x ∈ I.

(i) Define the function g : [a, b] → R by g(x) = 1 if f(x) > 0 and

g(x) = −1 if f(x) < 0 (note that g is well-defined because we assume

that f(x) 6= 0 for all x ∈ [a, b]). Prove that g is continuous on [a, b]

and hence also uniformly continuous by Theorem 16.1 from class

(continuity on closed bounded intervals implies uniform continuity).

Hint: use the sign preservation lemma (applied to f)

(ii) For each n ∈ N define the real numbers xn,0, xn,1, . . . , xn,n by xi,n =

a+ i
n(b− a) (geometrically we divide [a, b] into n subintervals of the

same length and let {xi,n}∞i=0 denote the endpoints of those inter-

vals). Prove that for each n there exists 0 ≤ k < n s.t. g(xk,n) = −1

and g(xk+1,n) = 1.

(iii) Now use (ii) to prove that g cannot be uniformly continuous, reaching

a contradiction with (a).

Problem 5: Let f be a real function which is uniformly continuous on some

set E. Prove that if {xn} is any convergent sequence s.t. xn ∈ E for all n,

then the sequence {f(xn)} is also convergent. Note: If {xn} converges to

some x ∈ E, then by the sequential characterization of continuity {f(xn)}
converges to f(x) (so uniform continuity is not needed); however, in this

problem we claim that {f(xn)} converges regardless of whether lim
n→∞

xn lies

in E or not. Hint: The result of this problem follows immediately from

one of the results in Section 3.4 of the book and another theorem we proved

earlier in the course.

Problem 6: (bonus). Let f : Q → R (that is, the domain of f is the

set of all rational numbers), and suppose that f is uniformly continuous on

Q ∩ [a, b] for every closed bounded interval [a, b]. The goal of this problem

is to show that f can be extended to a continuous function F defined on R.

(a) Let {xn} be a convergent sequence of rational numbers. Prove that

lim
n→∞

f(xn) exists (this follows easily from Problem 5).

(b) Now let {xn} and {yn} be convergent sequences of rational num-

bers, and assume that lim
n→∞

xn = lim
n→∞

yn. Prove that lim
n→∞

f(xn) =

lim
n→∞

f(yn). Hint: Assume that lim
n→∞

f(xn) 6= lim
n→∞

f(yn), and use

{xn} and {yn} to construct another sequence {zn} s.t. {zn} con-

verges to x, but {f(zn)} does not converge (to any number), reaching

a contradiction with (a).

(c) Now define the function F : R→ R as follows: given x ∈ R, choose a

sequence {xn} of rational numbers which converges to x, and define
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F (x) = lim
n→∞

f(xn) (note that the limit on the right-hand side does

not depend on the choice of the sequence {xn} by (b)). Prove that

F (x) = f(x) if x ∈ Q (so that F is indeed an extension of f) and

F is continuous (at every point of R). Hint: To prove that F is

continuous, it suffices to show that F is uniformly continuous on

[a, b] for every closed bounded interval [a, b]. To prove the latter,

show that if we fix ε > 0 and let δ > 0 be such that |f(x)−f(y)| < ε
2

for all x, y ∈ [a, b] ∩Q satisfying |x− y| < δ, then |F (x)− F (y)| < ε

holds for all x, y ∈ [a, b] satisfying |x− y| < δ.

Note: One can use Problem 6, for instance, to rigorously define the

function F (x) = αx for x ∈ R (where α is a fixed positive real number).


