
Homework #5. Due Thursday, February 26th, in class

Reading:

1. For this assignment: 1.6 and 2.4 + class notes (Lectures 10-11).

2. For next week’s classes: 3.1 (limits of functions) and beginning of 3.3

(continuity); 3.2 will be assigned as required reading.

Note: In Lecture 11 we proved that various sets are countable by con-

structing enumerations for those sets. In homework problems below this will

usually not be necessary – you can prove countability by combining various

results discussed in class.

Problems:

Problem 1: Let A and B be sets.

(a) Suppose that A is countable and there exists a bijection ψ : A→ B.

Prove that B is also countable (this follows almost immediately from

the definition).

(b) Now suppose that A is countable, B is infinite and there exists a

surjection φ : A→ B. Prove that B is countable. Hint: Show that

there is a subset C of A such that φ restricted to C is a bijection

from C to B and then use (a) and a result from class.

Problem 2: Let A1, . . . , An be a finite collection of sets. Define the Carte-

sian product A1 × . . . × An to be the set of all n-tuples (a1, . . . , an) with

ai ∈ Ai for each i. Prove that if each Ai is countable, then A1 × . . .×An is

countable. Note that for n = 2 this holds by Lemma 11.5 from class. Hint:

Use induction on n. To complete the induction step show that there is a

natural bijection between A1× . . .×An×An+1 and (A1× . . .×An)×An+1

(where the set on the right by definition is the Cartesian product of two

sets, A1 × . . .×An and An+1).

Problem 3: A number α is called algebraic if α is a root of a (nonzero)

polynomial with integers coefficients, that is, if there exist integers c0, . . . , cn,

not all 0 such that
n∑

k=0

ckα
k = 0. Note that all rational numbers are algebraic

(if α = p
q , then qα − p = 0), but many irrational numbers are algebraic as

well (e.g.
√

2 is algebraic as (
√

2)2 − 2 = 0). The goal of this problem is to

prove that the set of all algebraic numbers is countable.

(a) For a fixed integer n ≥ 0, let Zn be the set of all polynomials of

degree at most n with integer coefficients. Prove that each Zn is
1
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countable. Hint: Use Problem 2 to construct a countable set Yn

and a bijection φn : Yn → Zn.

(b) Use (a) and the result from class to show that the set of all polyno-

mials with integer coefficients (of arbitrary degree) is countable.

(c) Finally use (b) and the fact that every polynomial has finitely many

roots to show that the set of all algebraic numbers is countable.

Problem 4: Let x be a real number. Prove that there exists a sequence

{qn} of rational numbers which converges to x. Hint: Start by constructing

two sequences {an} and {bn} of real numbers such that an < x < bn for all

n and lim an = lim bn = x. Once you have such sequences, think which

theorems can possibly be applicable.

Problem 5: Consider the sequence {an} defined by a1 = 2 and an+1 =
1
2(an+ 2

an
) for all n ≥ 1. Recall that in Lecture 9 we proved that this sequence

is convergent by applying the monotone convergence theorem. The goal of

this problem is prove convergence of {an} by a different method, namely by

showing that it is Cauchy (and hence also convergent by Theorem 10.2). In

Lecture 10 we proved that {an} is Cauchy if there is α ∈ (0, 1) such that

|an+2 − an+1| ≤ α|an+1 − an| for all n ∈ N. (∗ ∗ ∗)

Use the inequality an ≥
√

2 established in Lecture 9 to show that (***)

holds in this case for suitable α (which you need to find); note that α cannot

depend on n.

Before the next two problems we define the notions of convergent and

Cauchy sequences in arbitrary metric spaces. Recall that the notion of a

metric space was introduced in Homework#1 and some examples of metric

spaces were discussed in Homeworks#1 and #2.

So let (X, d) be a metric space, {an} a sequence in X (that is, a sequences

all of whose elements lie in X) and L some point of X.

(i) We say that {an} converges to L and write lim an = L if for every

ε > 0 there exists N ∈ N such that d(an, L) < ε for all n ≥ N .

(ii) We say that {an} is Cauchy if for every ε > 0 there exists N ∈ N
such that d(an, am) < ε for all n,m ≥ N .

As you can see, this is really the same definition as for real sequences except

that |x− y| is replaced d(x, y).

One may ask which limit theorems we established for R extend to arbi-

trary metric spaces. Some results (e.g. sum rule, product rule or comparison

theorem) do not even make sense as statements since in general one cannot

talk about sums/products or inequalities between elements of X, while some
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others remain true with essentially the same proofs (recall that triangle in-

equality in the general metric space has the form d(x, z) ≤ d(x, y) + d(y, z)

for all x, y, z ∈ R).

Problem 6: Let (X, d) be a metric space. Prove that any convergent

sequence in X is Cauchy. Hint: The proof is virtually identical to the

corresponding result from class.

Problem 7: Again let (X, d) be a metric space.

(a) (optional) Assume that (X, d) has the property that every Cauchy

sequence has a convergent subsequence. Prove that every Cauchy

sequence in X is convergent.

(b) One can consider rational numbers Q as a metric space with the

standard metric d(x, y) = |x − y|. Prove that there exist Cauchy

sequences in (Q, d) which do NOT converge (to an element of Q).

Hint: use the result of one of the earlier problems in this homework.


