
Homework #4. Due Thursday, February 12th, in class

Reading:

1. For this assignment: Sections 2.1, 2.2, first part of 2.3 + class notes

(Lectures 7-8).

2. For next week’s classes: the second part of 2.3 (Bolzano-Weierstrass

theorem), 2.4 (Cauchy sequences) and 1.6 (countable and uncountable sets).

Mandatory reading 1: Before the class on Tuesday, Feb 10 read the

proof of Bolzano-Weierstrass theorem (Theorem 2.26). I will present the

proof in class on Tuesday ASSUMING that you have already read it in the

book.

Mandatory reading 2: There are a lot of important results in Chap-

ter 2, and we did not discuss some of them in class due to time constraints.

The following is the list of such items which are left as required reading (all

of them will be used later in the course):

(a) squeeze theorem (Theorem 2.9). Note that squeeze theorem has two

parts. The first part is probably familiar to you from calculus, but

the second part is likely new for many of you.

(b) Definition 2.14 and Theorem 2.15. Definition and basic properties

of infinite limits.

(c) Examples 2.20 and 2.21. Additional applications of the monotone

convergence theorem.

Problems:

Problem 1: Let {an} be a sequence which has finitely many distinct

terms (e.g. 1, 3, 2, 3, 2, 3, 2, . . .). Prove that if {an} converges, then there

exists N ∈ N and C ∈ R such that an = C for all n ≥ N (such sequences

are called eventually constant).

Problem 2: Let {an} be a sequence and L a real number. Prove that

lim
n→∞

an = L ⇐⇒ for every k ∈ N there exists N = N(k) such that

|an−L| < 1
k for all n ≥ N (the point is that instead of verifying the inequality

in the definition of limit for all ε > 0, it suffices to check that condition for

ε of the form 1
k with k ∈ N). Hint: One direction is immediate, and the

other direction follows from one of the problems in earlier homeworks.

Problem 3: Let {an} be a sequence with an > 0 for all n. Prove that

an → +∞ (see Definition 2.14) ⇐⇒ 1
an
→ 0.
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Problem 4: Let {an} be a sequence. Prove that {an} is unbounded

above ⇐⇒ there is a subsequence {ank
} such that lim

k→∞
ank

= +∞.

Hint: for the forward direction (⇒) show that one can construct a se-

quence of natural numbers n1 < n2 < . . . such that ank
> k for all k ∈ N.

Such a sequence can be constructed inductively: suppose that for some

m ≥ 1 we have already constructed n1 < n2 < . . . < nm such that ank
> k

for k = 1, . . . ,m. Assume that the process cannot be continued, that is, one

cannot choose nm+1 ∈ N such that nm+1 > nm and anm+1 > m + 1, and

deduce that the sequence {an} must be bounded, reaching a contradiction.

Problem 5: The goal of this problem is to prove the “quotient rule” for

limits (the last part of Theorem 2.12 from the book or Theorem 7.4 from

class). Note that it suffices to prove that lim 1
bn

= 1
lim bn

(where bn 6= 0 for

all n and lim bn 6= 0) – once this is done, the general case follows from the

product rule.

So, let {bn} be a convergent sequence such that bn 6= 0 for all n and

lim bn 6= 0. Let L = lim bn.

(a) Show that there exists N ∈ N such that |bn| > |L|
2 for all n ≥ N . It

may be convenient to consider the cases L > 0 and L < 0 separately.

(b) Use (a) to prove that the sequence
{

1
bn

}
is bounded.

(c) Now use (b) to prove that
{

1
bn

}
converges and lim 1

bn
= 1

L

Problem 6: Define the function f : R → R by f(x) = 1+x
2 . Fix some

x0 ∈ R, and define the sequence {xn}∞n=1 by xn = f(xn−1) for all n ∈ N.

(a) Prove that if 1 ≤ x, then 1 ≤ f(x) ≤ x. Also prove that if x ≤ 1,

then x ≤ f(x) ≤ 1.

(b) Use (a) and the monotone convergence theorem to prove that the

sequence {xn} converges to 1 (regardless of the value of x0).

Problem 7: Problem 2.2.9 from Wade’s book.


