
Homework #2. Due Thursday, January 29th, in class

Reading:

1. For this assignment: Section 1.3 + class notes (Lectures 3-4).

2. For next week’s classes: Section 1.5 and 2.1. We may briefly talk about

induction as well (1.4), but I have not decided yet.

Problems:

Problem 1: Prove Claim 3.3 from class: let S be a non-empty subset

of R. Then max(S) exists (that is, S has a maximal element) ⇐⇒ S is

bounded above and sup(S) ∈ S.

Problem 2: Let S be a non-empty subset of R. Let UB(S) be the set

of all upper bounds of S (note that this set may be empty) and LB(S) be

the set of all lower bounds of S. Also let −S = {−s : s ∈ S}

(i) Let M ∈ R. Prove that M = sup(S) if and only if M = min(UB(S))

(the minimal element of UB(S)). Also prove that M = inf(S) if and

only if M = max(LB(S)) (the maximal element of LB(S)). This is

essentially a reformulation of the definition of sup and inf.

(ii) Let y ∈ R. Prove that y ∈ UB(S) ⇐⇒ −y ∈ LB(−S).

(iii) Deduce from (ii) that UB(S) has a minimum ⇐⇒ LB(−S) has a

maximum, and if they exist, then min(UB(S)) = −max(LB(−S)).

(iv) (practice) Combine (i)-(iii) to deduce the reflection principle as for-

mulated in Lecture 4.

Problem 3: Use the Archimedean property to prove that for every real

number ε > 0 there exists n ∈ N such that 1
n < ε.

Problem 4: Prove the following result, which can be thought of as a

converse of the Approximation Theorem (Theorem 3.2). Let S be a non-

empty subset of R which is bounded above. Let M ∈ R be an upper bound

for S, and suppose that for all ε > 0 there exists x ∈ S such that M − ε <
x ≤M . Prove that M = sup(S).

Problem 5: Let A and B be non-empty bounded above subsets of R,

and let A+ B = {a+ b : a ∈ A, b ∈ B}. Prove that A+ B is also bounded

above and sup(A+B) = sup(A) + sup(B).

Problem 6: This problem introduces the notions of open and closed

subsets of R. Let S be a subset R. We say that S is open if for every x ∈ S
there exists ε > 0 (which may depend on x) such that (x − ε, x + ε) ⊆ S

(thus, for every point of S there is some open interval centered at that point
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which is entirely contained in S). We say that S is closed if its complement

R \ S is open.

(a) Prove that if S is an open interval (that is, S = (a, b) = {x ∈ R :

a < x < b} for some a < b), then S is an open subset of R. Hint:

This is merely a reformulation of one of the results in HW#1.

(b) Prove that if S is a closed interval (S = [a, b] = {x ∈ R : a ≤ x ≤ b}
for some a ≤ b), then S is a closed subset of R.

Before the next problem we define the notion of an open ball in any metric

space (recall that the notion of a metric space was introduced in HW#1.6).

Let (X, d) be a metric space. Given x ∈ X and a real number ε > 0, we

define Bε(x) = {y ∈ X : d(x, y) < ε}, the set of all points of X whose

distance from x is less than ε. The set Bε(x) is called the open ball of radius

ε around x (or centered at x).

Problem 7:

(a) Let X = R and d(x, y) = |x−y|. Recall that (X, d) is a metric space

by HW#1.6(b). Prove that Bε(x) = (x − ε, x + ε) for all x ∈ X

and ε > 0 (thus, an open ball of radius ε centered at x in this case

is simply the open interval of length 2ε centered at x). Hint: The

result follows directly from basic properties of absolute values.

(b) Now let X = R2 = {(x, y) : x, y ∈ R}, and define functions d :

X × X → R and D : X × X → R by setting d((x1, y1), (x2, y2)) =√
(x1 − x2)2 + (y1 − y2)2 and D((x1, y1), (x2, y2)) = |x1−x2|+ |y1−

y2|. Note that d((x1, y1), (x2, y2)) is simply the distance (in the usual

sense) between points (x1, y1) and (x2, y2) on the (Euclidean) plane

R2. In this problem you can assume without proof that the pairs

(X, d) and (X,D) are both metric spaces. The function d is called

the Euclidean metric on R2 (for the above reason), and the function

D is called the Manhattan metric on R2 (do you see why it is called

this way?).

Now the actual problem: Describe the open ball Bε((x, y)) in

each of these two metric spaces (in both cases the answer is a simple

geometric figure) (an answer + a brief explanation is sufficient).

Problem 8 (bonus): Now we define the notion of an open set in an arbi-

trary metric space. Let (X, d) be a metric space. A subset S of X is called

open if for every x ∈ S there exists ε > 0 such that Bε(x) ⊆ S. Prove that

if S is any open ball in X (that is, S = Bα(y) for some y ∈ X and α > 0),

then S is an open subset of X.


