Homework #2. Due Thursday, January 29th, in class Reading:

1. For this assignment: Section $1.3 +$ class notes (Lectures 3-4).

2. For next week's classes: Section 1.5 and 2.1. We may briefly talk about induction as well (1.4), but I have not decided yet.

Problems:

Problem 1: Prove Claim 3.3 from class: let S be a non-empty subset of R. Then max(S) exists (that is, S has a maximal element) \iff S is bounded above and $\text{sup}(S) \in S$.

Problem 2: Let S be a non-empty subset of R. Let $UB(S)$ be the set of all upper bounds of S (note that this set may be empty) and $LB(S)$ be the set of all lower bounds of S. Also let $-S = \{-s : s \in S\}$

- (i) Let $M \in \mathbb{R}$. Prove that $M = \sup(S)$ if and only if $M = \min(UB(S))$ (the minimal element of $UB(S)$). Also prove that $M = \inf(S)$ if and only if $M = max(LB(S))$ (the maximal element of $LB(S)$). This is essentially a reformulation of the definition of sup and inf.
- (ii) Let $y \in \mathbb{R}$. Prove that $y \in UB(S) \iff -y \in LB(-S)$.
- (iii) Deduce from (ii) that $UB(S)$ has a minimum $\iff LB(-S)$ has a maximum, and if they exist, then $min(UB(S)) = -max(LB(-S)).$
- (iv) (practice) Combine (i)-(iii) to deduce the reflection principle as formulated in Lecture 4.

Problem 3: Use the Archimedean property to prove that for every real number $\varepsilon > 0$ there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < \varepsilon$.

Problem 4: Prove the following result, which can be thought of as a converse of the Approximation Theorem (Theorem 3.2). Let S be a nonempty subset of R which is bounded above. Let $M \in \mathbb{R}$ be an upper bound for S, and suppose that for all $\varepsilon > 0$ there exists $x \in S$ such that $M - \varepsilon$ $x \leq M$. Prove that $M = \sup(S)$.

Problem 5: Let A and B be non-empty bounded above subsets of \mathbb{R} . and let $A + B = \{a + b : a \in A, b \in B\}$. Prove that $A + B$ is also bounded above and $\sup(A + B) = \sup(A) + \sup(B)$.

Problem 6: This problem introduces the notions of open and closed subsets of R. Let S be a subset R. We say that S is open if for every $x \in S$ there exists $\varepsilon > 0$ (which may depend on x) such that $(x - \varepsilon, x + \varepsilon) \subseteq S$ (thus, for every point of S there is some open interval centered at that point

which is entirely contained in S). We say that S is closed if its complement $\mathbb{R} \setminus S$ is open.

- (a) Prove that if S is an open interval (that is, $S = (a, b) = \{x \in \mathbb{R} :$ $a < x < b$ for some $a < b$, then S is an open subset of R. Hint: This is merely a reformulation of one of the results in $HW#1$.
- (b) Prove that if S is a closed interval $(S = [a, b] = \{x \in \mathbb{R} : a \le x \le b\}$ for some $a \leq b$, then S is a closed subset of R.

Before the next problem we define the notion of an open ball in any metric space (recall that the notion of a metric space was introduced in $HW#1.6$). Let (X, d) be a metric space. Given $x \in X$ and a real number $\varepsilon > 0$, we define $B_{\varepsilon}(x) = \{y \in X : d(x, y) < \varepsilon\}$, the set of all points of X whose distance from x is less than ε . The set $B_{\varepsilon}(x)$ is called the *open ball of radius* ε around x (or centered at x).

Problem 7:

- (a) Let $X = \mathbb{R}$ and $d(x, y) = |x y|$. Recall that (X, d) is a metric space by HW#1.6(b). Prove that $B_{\varepsilon}(x) = (x - \varepsilon, x + \varepsilon)$ for all $x \in X$ and $\varepsilon > 0$ (thus, an open ball of radius ε centered at x in this case is simply the open interval of length 2ε centered at x). **Hint:** The result follows directly from basic properties of absolute values.
- (b) Now let $X = \mathbb{R}^2 = \{(x, y) : x, y \in \mathbb{R}\},\$ and define functions d: $X \times X \to \mathbb{R}$ and $D: X \times X \to \mathbb{R}$ by setting $d((x_1, y_1), (x_2, y_2)) =$ $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$ and $D((x_1,y_1),(x_2,y_2))=|x_1-x_2|+|y_1$ y_2 . Note that $d((x_1, y_1), (x_2, y_2))$ is simply the distance (in the usual sense) between points (x_1, y_1) and (x_2, y_2) on the (Euclidean) plane \mathbb{R}^2 . In this problem you can assume without proof that the pairs (X, d) and (X, D) are both metric spaces. The function d is called the Euclidean metric on \mathbb{R}^2 (for the above reason), and the function D is called the *Manhattan metric* on \mathbb{R}^2 (do you see why it is called this way?).

Now the actual problem: Describe the open ball $B_{\varepsilon}((x, y))$ in each of these two metric spaces (in both cases the answer is a simple geometric figure) (an answer $+$ a brief explanation is sufficient).

Problem 8 (bonus): Now we define the notion of an open set in an arbitrary metric space. Let (X, d) be a metric space. A subset S of X is called open if for every $x \in S$ there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq S$. Prove that if S is any open ball in X (that is, $S = B_{\alpha}(y)$ for some $y \in X$ and $\alpha > 0$), then S is an open subset of X .