
14. Lectures 14.

14.1. Continuous Random Variables and Density Functions.

Definition. A random variable X is called continuous if there exists a func-

tion f : R→ R≥0 such that for all c, d ∈ R with c ≤ d the following equality

holds:

P (c ≤ X ≤ d) =

d∫
c

f(x)dx.

The function f with this property is called a density function of X (or prob-

ability density function, abbreviated as PDF).

Example 1. Fix a, b ∈ R, with a < b, and let X be a random point of

the interval [a, b], where all points are equally likely to occur. Then X is a

continuous random variable, and its density function f is given by

f(x) =

{
1
b−a if a ≤ x ≤ b
0 otherwise,

(∗ ∗ ∗)

Remark: Density function f of X is not uniquely defined; for instance,

if we define f(x) = 1
b−a for a < x < b (replacing non-strict inequalities by

strict inequalities in the above definition) and f(x) = 0 otherwise, this new

f would still be a density function of X.

To see why f given by (***) is a density of X we first need to give a

more formal definition of X. We interpret the description of X given in the

example as follows: P (a ≤ X ≤ b) = 1, and for any a ≤ c ≤ d ≤ b, the

probability P (c ≤ X ≤ d) should be proportional to the length of interval

[c, d]. Since P (a ≤ X ≤ b) = 1, we must have P (c ≤ X ≤ d) = c−d
b−a

whenever a ≤ c ≤ d ≤ b.

Now it is clear why P (c ≤ X ≤ d) =
d∫
c
f(x)dx for f given by (***) at least

when a ≤ c ≤ d ≤ b. Indeed, in this case
d∫
c
f(x)dx =

d∫
c

1
b−adx = x

b−a
∣∣d
c

=

d
b−a −

x
b−a = d−c

b−a . Alternatively, we can argue geometrically:
d∫
c
f(x)dx =

d∫
c

1
b−adx is the area of the rectangle which has width d− c and height 1

b−a ,

so the area is d−c
b−a .

It is easy to see that the formula P (c ≤ X ≤ d) =
d∫
c
f(x)dx remains true

even without the assumption a ≤ c ≤ d ≤ b. This can be formally proved
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using case-by-case analysis. For instance, consider the case c < a ≤ d ≤ b.

In this case P (c ≤ X ≤ d) = P (c ≤ X < a) + P (a ≤ X ≤ d) = 0 + d−a
b−a

(here P (c ≤ X < a) since the range of X is contained on [a, b] and P (a ≤
X ≤ d) = d−a

b−a by the result of the previous paragraph). On the other hand,
d∫
c
f(x)dx =

a∫
c
f(x)dx +

d∫
a
f(x)dx =

a∫
c

0dx +
d∫
a

1
b−adx = d−a

b−a as well. Other

cases are treated similarly.

Definition. The random variable X in Example 1 is called the uniform

random variable on [a, b].

Before discussing the next example we state a complete characterization

of density functions. Note that this characterization is very similar to the

corresponding characterization of probability mass functions.

Theorem 14.1. Let f : R→ R be a function. Then f is a density function

of some random variable X if and only if

(i) f(x) ≥ 0 for all x ∈ R

(ii)
∞∫
−∞

f(x)dx = 1.

Example 2. Fix λ > 0 and define f : R→ R by

f(x) =

{
λe−λx if x ≥ 0
0 if x < 0

Then f is a density function of some random variable. The corresponding

random variable is called the exponential random variable with parameter λ.

We use Theorem 14.1 to check that f is indeed a density function. The

condition f(x) ≥ 0 is clear. To compute
∞∫
−∞

f(x)dx we use substitution

u = λx:

∞∫
−∞

f(x)dx =

0∫
−∞

f(x)dx+

∞∫
0

f(x)dx = 0 +

∞∫
0

λe−λxdx

=

∞∫
0

λe−udu = −e−u
∣∣∞
0

= e−u
∣∣0
∞ = e−0 − e−∞ = 1− 0 = 1.

Note that in the above computation the integration limits did not change

when we switched from x to u since if x = 0, then to u = λ · 0 = 0, and if

x→∞, then u = λx→∞ as well (since λ > 0).

14.2. Expectation (mean) and variance of continuous random vari-

ables. If we know the definition of some general concept dealing with dis-

crete random variables, there is a general principle which can be used at least
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to guess what should be the right definition of the corresponding concept for

continuous random variables. Informally speaking, we take the definition in

the discrete case, replace all sums by integrals and replace all occurrences of

PMFs by density functions. We shall now use this principle to motivate the

definition of expectation of a continuous random variable (a more conceptual

motivation will be discussed later in the course).

Recall that for a discrete random variable X, the expectation E[X] is

defined by E[X] =
∑

x∈R(X)

x · P (X = x) where R(X) denotes the range of

X. Note that we can rewrite this definition as E[X] =
∑
x∈R

x · pX(x) where

pX is the PMF of X. Note that adding values of x outside of R(X) does

not affect the sum since for all such x we have pX(x) = P (X = x) = 0.

Based on the above principle, if X is a continuous random variable, the

expectation E[X] should be defined as
∫
R
xf(x) dx. This turns out to be the

right definition, but we shall convert to more traditional calculus notation

and write
∞∫
−∞

instead of
∫
R

.

Definition. Let X be a continuous random variable with density function

f .

(a) The expectation of X is the number E[X] =
∞∫
−∞

xf(x) dx (if this

integral converges)

(b) The variance of X is the number V ar(X) = E[(X − E[X])2].

Note that the definition of variance in terms of expectation is the same

in discrete and continuous cases.

The following theorem provides a formula for computing expectation of a

function of a random variable:

Theorem 14.2. Let X be a continuous random variable with density f , and

let g : R→ R be a continuous function. Then

E[g(X)] =

∞∫
−∞

g(x)f(x) dx.

In particular, E[X2] =
∞∫
−∞

x2f(x) dx.

A formal proof of this theorem is considerably more involved than the

proof of the corresponding theorem in the discrete case.

The following three formulas involving expectation and variance of con-

tinuous random variables are identical to the corresponding formulas for

discrete random variables:
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Theorem 14.3. Let X and Y be continuous random variables and let a, b ∈
R be some constants. The following hold:

(a) E[X + Y ] = E[X] + E[Y ]

(b) E[aX + b] = aE[X] + b

(c) V ar(X) = E[X2]− (E[X])2.

14.3. Cumulative distribution functions.

Definition. LetX be a random variable. Its cumulative distribution function

(abbreviated as CDF) is the function FX : R→ R given by

FX(x) = P (X ≤ x).

Note that unlike the notions of probability mass functions (which are only

defined for discrete random variables) and density functions (which are only

defined for continuous random variables), CDFs are defined for arbitrary

random variables (even the ones which are neither continuous nor discrete).

However, if X is discrete or continuous, the general formula for CDF can be

made more explicit in both cases.

Case 1: Let X be a discrete random variable. Then

(14.1) FX(x) =
∑
y≤x

P (X = y)

Example 3. Let X be a discrete random variable with R(X) = {1, 3, 5} and

P (X = 1) = 1
4 , P (X = 3) = 1

2 and P (X = 5) = 1
4 . Based on (14.1), the

corresponding CDF is given as follows:

FX(x) =


0 if x < 1
1
4 if 1 ≤ x < 3
3
4 = 1

4 + 1
2 if 3 ≤ x < 5

1 = 1
4 + 1

2 + 1
4 if x ≥ 5

The general principle for obtaining CDF of a discrete random variable X

from its PMF is very simple – CDF will always be a piecewise-constant func-

tion, with jumps occurring at the points of the range of X. The magnitude

of the jump at a point x ∈ R(X) is equal to P (X = x).

Case 2: Let X be a continuous random variable with density function f .

Then

(14.2) FX(x) =

x∫
−∞

f(t)dt

Example 4. Let X be a continuous random variable with density f(X) =
1

π(x2+1)
(the fact that this f is indeed a density function is verified similarly

to the example with exponential random variable). Based on (14.2), the CDF

in this example is given by
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FX(x) =

x∫
−∞

f(t)dt =

x∫
−∞

1

π(t2 + 1)
dt

=
arctan(t)

π

∣∣x
−∞ =

arctan(x)

π
−
(
−π/2
π

)
=

1

2
+

arctan(x)

π
.

We now state a complete characterization of CDFs:

Theorem 14.4. Let F : R → R be a function. Then F is a CDF of some

random variable X if and only if

(i) lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1

(ii) F is increasing (that is, x ≤ y implies F (x) ≤ F (y)).

(iii) F is right-continuous at every x ∈ R (by definition this means that

the right-hand limit lim
y→x+

F (y) is equal to F (x)).

About the proof. In [Durrett, Theorem 5.1] it is shown that CDF of any

random variable satisfies all properties (i)-(iii). The proof in the reverse

direction (that any function satisfying (i)-(iii) is a CDF of some random

variable) is more involved and beyond the level of the course.

The fact that any CDF must satisfy (i) is actually clear: if x ≤ y, then the

eventX ≤ x is a subset of the eventX ≤ y, so we must have FX(x) = P (X ≤
x) ≤ P (X ≤ y) = FX(y). Property (ii) takes more work to prove, but

intuitively is clear as well: if x→∞, then F (x) = P (X ≤ x) should converge

to P (X < ∞) = 1, and similarly if x → −∞, then F (x) = 1 − P (X > x)

should converge to 1−P (X > −∞) = 1−1 = 0. Finally, we shall provide an

informal explanation of property (iii). Let us think of our random variable

X as a mass distribution on the real line. Then part of the overall mass will

be concentrated at isolated points, and part of the mass will be distributed

continuously over certain intervals. The CDF FX will be continuous (not

just right-continuous) everywhere except for points with isolated masses. If x

is a point containing an isolated mass m, then that mass m will contribute

to the value FX(y) for every y ≥ x and will not contribute to FX(y) for

every y < x. This is why lim
y→x+

F (y) will equal F (x), but lim
y→x−

F (y) will not

necessarily equal F (x).

�


