10. Lectures 10 and 11.

All random variables below are assume discrete. For a random variable X we denote its range by $R(X)$.

10.1. Some basic results about mean and variance.

Theorem 10.1. Let X and Y be random variables defined on the same sample space. Then $E(X + Y) = EX + EY$.

Proof. We will first give a proof directly from definition and then explain how it could be shortened it using suitable more general theorems.

By definition of expectation

(10.1)
$$
E(X + Y) = \sum_{z \in R(X+Y)} z \cdot P(X + Y = z)
$$

$$
= \sum_{z \in R(X+Y)} \sum_{z=x+y, x \in R(X), y \in R(Y)} z \cdot P(X = x, Y = y)
$$

$$
= \sum_{z \in R(X+Y)} \sum_{z=x+y, x \in R(X), y \in R(Y)} (x + y)P(X = x, Y = y)
$$

(Here $P(X = x, Y = y)$ is the probability of the event $(X = x \text{ and } Y = y)$). In the last two expressions the inner summation (for a fixed z) is over all pairs (x, y) with $x \in R(X)$, $y \in R(Y)$ such that $x + y = z$.

Now observe that each pair (x, y) with $x \in R(X)$, $y \in R(Y)$ contributes exactly one term in the last expression of (10.1), and the contribution is equal to $(x + y)P(X = x, Y = y)$. Therefore, the last expression can be rewritten as \sum $x \in R(X), y \in R(Y)$ $(x + y)P(X = x, Y = y)$ which is equal to \sum $x \in R(X), y \in R(Y)$ $xP(X = x, Y = y) + \sum$ $x \in R(X), y \in R(Y)$ $yP(X = x, Y = y)$. Now

we evaluate each of these two summations separately.

First note that

$$
\sum_{x \in R(X), y \in R(Y)} xP(X = x, Y = y)
$$

=
$$
\sum_{x \in R(X)} (\sum_{y \in R(Y)} xP(X = x, Y = y)) = \sum_{x \in R(X)} x \sum_{y \in R(Y)} P(X = x, Y = y).
$$

If we fix $x \in R(X)$, the events $(X = x \& Y = y)$ for different y are disjoint, and their union is clearly the event $X = x$. Therefore,

$$
\sum_{x \in R(X)} x \sum_{y \in R(Y)} P(X = x, Y = y) = \sum_{x \in R(X)} x P(X = x) = EX.
$$

By the same argument $x \in R(X), y \in R(Y)$ $yP(X = x, Y = y) = EY$, and putting everything together, we conclude that $E(X + Y) = EX + EY$. \Box

Note that the first part of the above proof was establishing the formula

$$
E(X + Y) = \sum_{x \in R(X), y \in R(Y)} (x + y)P(X = x, Y = y).
$$
 (**)

Instead of proving this directly, we could refer to a more general theorem (see [BT, p.94])

Theorem 10.2. If X and Y are random variables on the same sample space, then for any function $g : \mathbb{R}^2 \to \mathbb{R}$ we have

$$
E(g(X, Y)) = \sum_{x \in R(X), y \in R(Y)} g(x, y) P(X = x, Y = y).
$$

(To justify $(**)$ we could simply apply Theorem 10.2 to $q(x, y) = x + y$).

Theorem 10.2 is a natural generalization of the corresponding theorem in the case of one random variable:

Theorem 10.3. For any random variable X and any function $g : \mathbb{R} \to \mathbb{R}$ we have

$$
E(g(X)) = \sum_{x \in R(X)} g(x)P(X = x).
$$

Theorem 10.3 is proved in [BT, p.84], and Theorem 10.2 can be proved by a similar method. Note that [BT] uses abbreviated notation for PMF of a random variable $(p_X(x)$ instead of $P(X = x)$ and for joint PMF of two random variables $(p_{X,Y}(x, y)$ instead of $P(X = x, Y = y)$).

Theorem 10.4 (Linearity of expectation). If X is a random variable and $a, b \in \mathbb{R}$ are constants, then $E(aX + b) = a \cdot EX + b$

Proof. Exercise. □

Theorem 10.5. Let X be a random variable. Then

$$
Var(X) = E(X^2) - (EX)^2.
$$

Proof. By definition $Var(X) = E((X - EX)^2) = E(X^2 - 2EX \cdot X + (EX)^2)$. By Theorem 10.1,

$$
E(X^{2} - 2EX \cdot X + (EX)^{2}) = E(X^{2}) + E(-2EX \cdot X + (EX)^{2}).
$$

Since $-2EX$ and $(EX)^2$ are constants, applying Theorem 10.4 with $a =$ $-2EX$ and $b = (EX)^2$, we get $E(-2EX \cdot X + (EX)^2) = (-2EX) \cdot EX +$ $(EX)^2 = -2(EX)^2 + (EX)^2 = -(EX)^2.$

Putting everything together, we conclude that $Var(X) = E(X^2) + (- (EX)^2) =$ $E(X^2) - (EX)^2$.

Theorem 10.6 (Mean of a geometric random variable). Let $p \in (0,1)$ and X a geometric random variable with parameter p. Then $EX = \frac{1}{n}$ $\frac{1}{p}$.

Proof. By definition $R(X) = N$ and $P(X = k) = p(1-p)^{k-1}$. Hence

$$
EX = \sum_{k=1}^{\infty} k p (1 - p)^{k-1}
$$

Starting with the equality

$$
\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \text{ for } x \in (-1,1)
$$

(which is just the formula for the sum of a geometric series) and taking derivatives of both sides (differentiating RHS term-by-term), we get

$$
\sum_{k=1}^{\infty} kx^{k-1} = ((1-x)^{-1})' = (-1)^2(1-x)^{-2} = \frac{1}{(1-x)^2} \text{ for } x \in (-1,1).
$$
\n
$$
(***)
$$

(A general theorem asserts that if $\sum_{n=1}^{\infty}$ $n=0$ $a_n(x-c)^n$ is a power series centered at x, R is its radius of convergence and $f(x) = \sum_{n=0}^{\infty}$ $n=0$ $a_n(x-c)^n$ which is a function defined at least on of the open interval $(c - R, c + R)$, then $f'(x) = \sum^{\infty}$ $n=1$ $na_n(x-c)^{n-1}$ for all $x \in (c - R, c + R)$. Now setting $x = 1 - p$ in (***) and multiplying both sides by p, we get

 $\sum_{i=1}^{\infty}$ $_{k=1}$ $kp(1-p)^{k-1} = p \cdot \frac{1}{p^2}$ $\frac{1}{p^2} = \frac{1}{p}$ $\frac{1}{p}$, which completes the proof.

Theorem 10.7 (Mean and variance of a Poisson random variable). Let $\lambda > 0$ be a real number and X a Poisson random variable with parameter p. Then $EX = Var(X) = \lambda$.

Proof. By definition of Poisson random variable $R(X) = \mathbb{Z}_{\geq 0}$ (non-negative integers) and $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $\frac{\lambda^k}{k!}$ for each $k \in \mathbb{Z}_{\geq 0}$. Note that this is a legitimate PMF since $e^{-\lambda} \frac{\lambda^k}{k!} \geq 0$ and

$$
\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1.
$$

We start by computing the mean:

$$
EX = \sum_{k=0}^{\infty} k \cdot e^{-\lambda} \frac{\lambda^k}{k!}
$$

\n
$$
= \sum_{k=1}^{\infty} k \cdot e^{-\lambda} \frac{\lambda^k}{k!} \qquad k = 0 \text{ term vanishes}
$$

\n
$$
= \sum_{k=1}^{\infty} e^{-\lambda} \frac{\lambda \cdot \lambda^{k-1}}{(k-1)!}
$$

\n
$$
= \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}
$$

\n
$$
= \lambda e^{-\lambda} \sum_{j=0}^{\infty} \frac{\lambda^j}{j!} \qquad \text{set } j = k - 1
$$

\n
$$
= \lambda e^{-\lambda} e^{\lambda} = \lambda.
$$

For the variance we will use the formula $Var(X) = E(X^2) - (EX)^2$. Applying Theorem 10.3 with $g(x) = x^2$, we get

$$
E(X^{2}) = \sum_{k=0}^{\infty} k^{2} P(X = k) = \sum_{k=0}^{\infty} k^{2} e^{-\lambda} \frac{\lambda^{k}}{k!} = \sum_{k=1}^{\infty} k e^{-\lambda} \frac{\lambda^{k}}{(k-1)!}
$$

Writing k as $k - 1 + 1$, we obtain that the last expression is equal to

$$
\sum_{k=1}^{\infty} (k-1)e^{-\lambda} \frac{\lambda^k}{(k-1)!} + \sum_{k=1}^{\infty} e^{-\lambda} \frac{\lambda^k}{(k-1)!} = \sum_{k=2}^{\infty} e^{-\lambda} \frac{\lambda^k}{(k-2)!} + \sum_{k=1}^{\infty} e^{-\lambda} \frac{\lambda^k}{(k-1)!}
$$

The second summation in the last expression is simply EX (by an earlier computation) which we found to be equal to λ , and the first summation is equal to λ^2 by a similar argument (factor out λ^2 and make a change of variable $j = k - 2$).

Thus we showed that $E(X^2) = \lambda^2 + \lambda$, so $Var(X) = (\lambda^2 + \lambda) - \lambda^2 = \lambda$. \Box

10.2. Independent Random Variables.

Definition. Random variables X and Y (defined on the same sample space) are called independent if for every $x \in R(X)$ and $y \in R(Y)$ the events $X = x$ and $Y = y$ are independent. In other words, X and Y are independent if

$$
P(X = x, Y = y) = P(X = x)P(Y = y)
$$
 for every $x \in R(X), y \in R(Y)$.

Example 1. Suppose we toss a fair coin twice. Define random variables X and Y by

$$
X = \begin{cases} 1 & if heads on first toss \\ 0 & if tails on first toss \end{cases} \qquad Y = \begin{cases} 1 & if heads on second toss \\ 0 & if tails on second toss \end{cases}
$$

Then X and Y are independent. Indeed, by definition, we need to check four equalities:

5

$$
P(X = 1, Y = 1) = P(X = 1)P(Y = 1)
$$

\n
$$
P(X = 1, Y = 0) = P(X = 1)P(Y = 0)
$$

\n
$$
P(X = 0, Y = 1) = P(X = 0)P(Y = 1)
$$

\n
$$
P(X = 0, Y = 0) = P(X = 0)P(Y = 0)
$$

All these equalities are indeed true since by definition of a fair coin LHS in each of the four cases is equal to $\frac{1}{4}$ and RHS is equal to $\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$ $rac{1}{4}$ as well.

On the other hand, if we set $Z = X + Y$, then X and Z are not independent. For instance, $P(X = 0, Z = 2) = 0$ since $Z = 2$ forces $X = Y = 1$ (so the event $X = 0 \& Z = 2$ cannot happen) while $P(X = 0)P(Z = 2) =$ $P(X = 0)P(X = Y = 1) = \frac{1}{2} \cdot \frac{1}{4}$ $\frac{1}{4} \neq 0.$

Theorem 10.8. Let X and Y be independent random variables defined on the same sample space. Then $E(XY) = EX \cdot EY$.

Proof. Exercise (proof is similar to that of Theorem 10.1). \Box

Theorem 10.9 (Variance of the sum of independent random variables). Let X and Y be independent random variables defined on the same sample space. Then $Var(X + Y) = Var(X) + Var(Y)$.

Proof. Using Theorems 10.5, 10.1 and 10.4, we have

$$
Var(X+Y) = E((X+Y)^2) - (E(X+Y))^2 = E(X^2 + 2XY + Y^2) - (EX + EY)^2
$$

= $E(X^2) + 2E(XY) + E(Y^2) - ((EX)^2 + 2EX \cdot EY + (EY)^2)$
= $(E(X^2) - (EX)^2) + (E(Y^2) - (EY)^2) + 2(E(XY) - EX \cdot EY) = Var(X) + Var(Y) + 0$
(where the last term is 0 by Theorem 10.8).

Independence of more than two random variables. A finite collection of random variables X_1, \ldots, X_n is called independent if for every $x_1 \in R(X_1), x_2 \in R(X_2), \ldots, x_n \in R(X_n)$, the events

$$
X_1 = x_1, \quad X_2 = x_2, \quad \ldots, \quad X_n = x_n
$$

are independent.

For instance, three random variables X, Y, Z are independent if for every $x \in R(X), y \in R(Y)$ and $z \in R(Z)$ we have

- (1) $P(X = x, Y = y) = P(X = x)P(Y = y)$
- (2) $P(X = x, Z = z) = P(X = x)P(Z = z)$
- (3) $P(Y = y, Z = z) = P(Y = y)P(Z = z)$
- (4) $P(X = x, Y = y, Z = z) = P(X = x)P(Y = y)P(Z = z).$