
10. Lectures 10 and 11.

All random variables below are assume discrete. For a random variable

X we denote its range by R(X).

10.1. Some basic results about mean and variance.

Theorem 10.1. Let X and Y be random variables defined on the same

sample space. Then E(X + Y ) = EX + EY .

Proof. We will first give a proof directly from definition and then explain

how it could be shortened it using suitable more general theorems.

By definition of expectation

(10.1) E(X + Y ) =
∑

z∈R(X+Y )

z · P (X + Y = z)

=
∑

z∈R(X+Y )

∑
z=x+y, x∈R(X), y∈R(Y )

z · P (X = x, Y = y)

=
∑

z∈R(X+Y )

∑
z=x+y, x∈R(X), y∈R(Y )

(x+ y)P (X = x, Y = y)

(Here P (X = x, Y = y) is the probability of the event (X = x and Y = y)).

In the last two expressions the inner summation (for a fixed z) is over all

pairs (x, y) with x ∈ R(X), y ∈ R(Y ) such that x+ y = z.

Now observe that each pair (x, y) with x ∈ R(X), y ∈ R(Y ) contributes

exactly one term in the last expression of (10.1), and the contribution is

equal to (x + y)P (X = x, Y = y). Therefore, the last expression can

be rewritten as
∑

x∈R(X),y∈R(Y )

(x + y)P (X = x, Y = y) which is equal to∑
x∈R(X),y∈R(Y )

xP (X = x, Y = y) +
∑

x∈R(X),y∈R(Y )

yP (X = x, Y = y). Now

we evaluate each of these two summations separately.

First note that∑
x∈R(X),y∈R(Y )

xP (X = x, Y = y)

=
∑

x∈R(X)

(
∑

y∈R(Y )

xP (X = x, Y = y)) =
∑

x∈R(X)

x
∑

y∈R(Y )

P (X = x, Y = y).

If we fix x ∈ R(X), the events (X = x&Y = y) for different y are disjoint,

and their union is clearly the event X = x. Therefore,∑
x∈R(X)

x
∑

y∈R(Y )

P (X = x, Y = y) =
∑

x∈R(X)

xP (X = x) = EX.
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By the same argument
∑

x∈R(X),y∈R(Y )

yP (X = x, Y = y) = EY , and

putting everything together, we conclude that E(X + Y ) = EX + EY . �

Note that the first part of the above proof was establishing the formula

E(X + Y ) =
∑

x∈R(X),y∈R(Y )

(x+ y)P (X = x, Y = y). (∗∗)

Instead of proving this directly, we could refer to a more general theorem

(see [BT, p.94])

Theorem 10.2. If X and Y are random variables on the same sample

space, then for any function g : R2 → R we have

E(g(X,Y )) =
∑

x∈R(X),y∈R(Y )

g(x, y)P (X = x, Y = y).

(To justify (**) we could simply apply Theorem 10.2 to g(x, y) = x+ y).

Theorem 10.2 is a natural generalization of the corresponding theorem in

the case of one random variable:

Theorem 10.3. For any random variable X and any function g : R → R
we have

E(g(X)) =
∑

x∈R(X)

g(x)P (X = x).

Theorem 10.3 is proved in [BT, p.84], and Theorem 10.2 can be proved

by a similar method. Note that [BT] uses abbreviated notation for PMF of

a random variable (pX(x) instead of P (X = x)) and for joint PMF of two

random variables (pX,Y (x, y) instead of P (X = x, Y = y)).

Theorem 10.4 (Linearity of expectation). If X is a random variable and

a, b ∈ R are constants, then E(aX + b) = a · EX + b

Proof. Exercise. �

Theorem 10.5. Let X be a random variable. Then

V ar(X) = E(X2)− (EX)2.

Proof. By definition V ar(X) = E((X−EX)2) = E(X2−2EX ·X+(EX)2).

By Theorem 10.1,

E(X2 − 2EX ·X + (EX)2) = E(X2) + E(−2EX ·X + (EX)2).

Since −2EX and (EX)2 are constants, applying Theorem 10.4 with a =

−2EX and b = (EX)2, we get E(−2EX ·X + (EX)2) = (−2EX) · EX +

(EX)2 = −2(EX)2 + (EX)2 = −(EX)2.

Putting everything together, we conclude that V ar(X) = E(X2)+(−(EX)2) =

E(X2)− (EX)2. �
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Theorem 10.6 (Mean of a geometric random variable). Let p ∈ (0, 1) and

X a geometric random variable with parameter p. Then EX = 1
p .

Proof. By definition R(X) = N and P (X = k) = p(1− p)k−1. Hence

EX =
∞∑
k=1

kp(1− p)k−1

Starting with the equality

∞∑
k=0

xk =
1

1− x
for x ∈ (−1, 1)

(which is just the formula for the sum of a geometric series) and taking

derivatives of both sides (differentiating RHS term-by-term), we get

∞∑
k=1

kxk−1 = ((1− x)−1)′ = (−1)2(1− x)−2 =
1

(1− x)2
for x ∈ (−1, 1).

(∗ ∗ ∗)
(A general theorem asserts that if

∞∑
n=0

an(x− c)n is a power series centered

at x, R is its radius of convergence and f(x) =
∞∑
n=0

an(x − c)n which is

a function defined at least on of the open interval (c − R, c + R), then

f ′(x) =
∞∑
n=1

nan(x− c)n−1 for all x ∈ (c−R, c+R)).

Now setting x = 1 − p in (***) and multiplying both sides by p, we get
∞∑
k=1

kp(1− p)k−1 = p · 1
p2

= 1
p , which completes the proof. �

Theorem 10.7 (Mean and variance of a Poisson random variable). Let

λ > 0 be a real number and X a Poisson random variable with parameter p.

Then EX = V ar(X) = λ.

Proof. By definition of Poisson random variable R(X) = Z≥0 (non-negative

integers) and P (X = k) = e−λ λ
k

k! for each k ∈ Z≥0. Note that this is a

legitimate PMF since e−λ λ
k

k! ≥ 0 and

∞∑
k=0

e−λ
λk

k!
= e−λ

∞∑
k=0

λk

k!
= e−λeλ = 1.

We start by computing the mean:
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EX =
∞∑
k=0

k · e−λ λkk!

=
∞∑
k=1

k · e−λ λkk! k = 0 term vanishes

=
∞∑
k=1

e−λ λ·λ
k−1

(k−1)!

= λe−λ
∞∑
k=1

λk−1

(k−1)!

= λe−λ
∞∑
j=0

λj

j! set j = k − 1

= λe−λeλ = λ.

For the variance we will use the formula V ar(X) = E(X2) − (EX)2. Ap-

plying Theorem 10.3 with g(x) = x2, we get

E(X2) =
∞∑
k=0

k2P (X = k) =
∞∑
k=0

k2e−λ
λk

k!
=

∞∑
k=1

ke−λ
λk

(k − 1)!

Writing k as k − 1 + 1, we obtain that the last expression is equal to

∞∑
k=1

(k−1)e−λ
λk

(k − 1)!
+
∞∑
k=1

e−λ
λk

(k − 1)!
=
∞∑
k=2

e−λ
λk

(k − 2)!
+
∞∑
k=1

e−λ
λk

(k − 1)!

The second summation in the last expression is simply EX (by an earlier

computation) which we found to be equal to λ, and the first summation

is equal to λ2 by a similar argument (factor out λ2 and make a change of

variable j = k − 2).

Thus we showed that E(X2) = λ2+λ, so V ar(X) = (λ2+λ)−λ2 = λ. �

10.2. Independent Random Variables.

Definition. Random variables X and Y (defined on the same sample space)

are called independent if for every x ∈ R(X) and y ∈ R(Y ) the events X = x

and Y = y are independent. In other words, X and Y are independent if

P (X = x, Y = y) = P (X = x)P (Y = y) for every x ∈ R(X), y ∈ R(Y ).

Example 1. Suppose we toss a fair coin twice. Define random variables X

and Y by

X =

{
1 if heads on first toss
0 if tails on first toss

Y =

{
1 if heads on second toss
0 if tails on second toss
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Then X and Y are independent. Indeed, by definition, we need to check

four equalities:

P (X = 1, Y = 1) = P (X = 1)P (Y = 1)

P (X = 1, Y = 0) = P (X = 1)P (Y = 0)

P (X = 0, Y = 1) = P (X = 0)P (Y = 1)

P (X = 0, Y = 0) = P (X = 0)P (Y = 0)

All these equalities are indeed true since by definition of a fair coin LHS in

each of the four cases is equal to 1
4 and RHS is equal to 1

2 ·
1
2 = 1

4 as well.

On the other hand, if we set Z = X + Y , then X and Z are not indepen-

dent. For instance, P (X = 0, Z = 2) = 0 since Z = 2 forces X = Y = 1

(so the event X = 0 &Z = 2 cannot happen) while P (X = 0)P (Z = 2) =

P (X = 0)P (X = Y = 1) = 1
2 ·

1
4 6= 0.

Theorem 10.8. Let X and Y be independent random variables defined

on the same sample space. Then E(XY ) = EX · EY .

Proof. Exercise (proof is similar to that of Theorem 10.1). �

Theorem 10.9 (Variance of the sum of independent random variables). Let

X and Y be independent random variables defined on the same sample

space. Then V ar(X + Y ) = V ar(X) + V ar(Y ).

Proof. Using Theorems 10.5, 10.1 and 10.4, we have

V ar(X+Y ) = E((X+Y )2)−(E(X+Y ))2 = E(X2+2XY+Y 2)−(EX+EY )2

= E(X2) + 2E(XY ) + E(Y 2)− ((EX)2 + 2EX · EY + (EY )2)

= (E(X2)−(EX)2)+(E(Y 2)−(EY )2)+2(E(XY )−EX·EY ) = V ar(X)+V ar(Y )+0

(where the last term is 0 by Theorem 10.8). �

Independence of more than two random variables. A finite col-

lection of random variables X1, . . . , Xn is called independent if for every

x1 ∈ R(X1), x2 ∈ R(X2), . . . , xn ∈ R(Xn), the events

X1 = x1, X2 = x2, . . . , Xn = xn

are independent.

For instance, three random variables X,Y, Z are independent if for every

x ∈ R(X), y ∈ R(Y ) and z ∈ R(Z) we have

(1) P (X = x, Y = y) = P (X = x)P (Y = y)

(2) P (X = x, Z = z) = P (X = x)P (Z = z)

(3) P (Y = y, Z = z) = P (Y = y)P (Z = z)

(4) P (X = x, Y = y, Z = z) = P (X = x)P (Y = y)P (Z = z).


