
Homework #8. Due on Friday, March 30th by 1pm in TA’s mailbox

Reading:

1. For this assignment: sections 4.3, 5.1 and beginning of 5.2 of the BOOK

(throughout this assignment BOOK refers to the book ‘A discrete transition

to advanced mathematics’) and class notes from Lectures 15-16.

2. For next week’s classes: sections 5.2 and 6.1.

Practice problems from the BOOK: From 5.1: 3, 5, 7, 11(b)(i)(iii)(v);

from 5.2: 1, 3, 8.

Problems to hand in:

0. Redo problems 2,3,4 and 5 from HW#6 (can be resubmitted for 90%

credit); see some comments on these problems at the end of the assignment.

1. Let N denote the number of passwords consisting of 6 lowercase English

letters in which the letter ‘a’ appears at least once.

(a) Use the inclusion-exclusion principle to prove that

N = 6 · 265 −
(

6

2

)
· 264 +

(
6

3

)
· 263 −

(
6

4

)
· 262 +

(
6

5

)
· 26− 1.

Recall that we gave an outline of this proof in Lecture 15.

(b) In Lecture 15 we proved that N = 266−256 using a different counting

argument. Use the binomial theorem to show directly that the two

expressions for N are equal to each other.

2. Given n ∈ N, define RP (n) to be the set of all integers between 1 and

n which are relatively prime to n, and let φ(n) = |RP (n)|. For instance,

RP (2) = {1}, so φ(2) = 1; RP (3) = {1, 2}, so φ(3) = 2; RP (4) = {1, 3}, so

φ(4) = 2; RP (5) = {1, 2, 3, 4}, so φ(5) = 4; RP (6) = {1, 5}, so φ(6) = 2 etc.

The obtained function φ : N→ N is called the Euler function.

The goal of this problem is to use the inclusion-exclusion principle to

prove the following formula for the Euler function: If n = pa11 . . . pakk where

p1, . . . , pk are distinct primes and each ai ∈ N (here it is essential that each

ai is positive), then

φ(n) = n
k∏

i=1

(1− 1

pi
) (∗ ∗ ∗)

Note that since (1 − 1
pi

) = pi−1
pi

, the above formula can be rewritten as

φ(n) =
k∏

i=1
pai−1
i (pi − 1).

1
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So assume that n = pa11 . . . pakk with pi and ai as above. For each 1 ≤ i ≤ k
let Ai be the set of all integers from 1 to n divisible by pi, and let A = ∪ki=1Ai

(a) Prove that φ(n) = n− |A|.
(b) Prove that |Ai| = n

pi
for each i, |Ai∩Aj | = n

pipj
if i and j are distinct

etc.

(c) Now use (a), (b) and the inclusion-exclusion principle to prove the

formula (***). It may be easier to expand the product in (***) and

show that the obtained expansion is equal to the right-hand side of

the formula in the inclusion-exclusion principle.

3. Problem 2 from Section 5.1 (make sure to prove your answer)

4. Problem 4 from Section 5.1 (make sure to prove your answer)

5. Problem 8 from Section 5.1 (the definition of the domain and range of a

relation appear on page 165)

6. Consider the relation R on Z given by xRy ⇐⇒ x + y is even. Prove

that R is an equivalence relation. Recall that we already checked symmetry

and reflexivity in class, so you only need to prove transitivity.

Some comments of problems 2-5 from HW#4.

Problem 2. Make sure you are proving exactly what you are asked to: if

n =
∏k

i=1 p
ai
i where p1, . . . , pk are distinct prime and each ai ∈ N and if

n = m2 for some m ∈ N, then each ai is even.

Problem 4. Recall that we discussed how to start on this problem in

Lecture 16.

Problem 5. Here is a completely formal definition of the ordp function

(which may be helpful for writing a formal argument). Let n ∈ N, and write

n =
∏k

i=1 p
ai
i where p1, . . . , pk are distinct primes and each ai ∈ Z≥0. If p is

any prime, define

ordp(n) =

{
ai if p = pi for some 1 ≤ i ≤ k
0 if p 6∈ {p1, . . . , pk}

Note that it is Ok to allow some ai equal to 0 here – for instance, we can

write 45 as 32 · 51 or, say, as 32 · 51 · 70. The definition of ordp(45) does not

depend on which of these factorizations we use.

General suggestion: It may be more convenient to solve these problems

in a different order: 5,3,2,4 since one can use 5(a) to solve 3 and 3 and/or

5(a) to solve 2.


