Homework $#8$. Due on Friday, March 30th by 1pm in TA's mailbox Reading:

1. For this assignment: sections 4.3, 5.1 and beginning of 5.2 of the BOOK (throughout this assignment BOOK refers to the book 'A discrete transition to advanced mathematics') and class notes from Lectures 15-16.

2. For next week's classes: sections 5.2 and 6.1.

Practice problems from the BOOK: From 5.1: 3, 5, 7, $11(b)(i)(iii)(v)$; from 5.2: 1, 3, 8.

Problems to hand in:

0. Redo problems 2,3,4 and 5 from HW#6 (can be resubmitted for 90% credit); see some comments on these problems at the end of the assignment.

1. Let N denote the number of passwords consisting of 6 lowercase English letters in which the letter 'a' appears at least once.

(a) Use the inclusion-exclusion principle to prove that

$$
N = 6 \cdot 26^{5} - {6 \choose 2} \cdot 26^{4} + {6 \choose 3} \cdot 26^{3} - {6 \choose 4} \cdot 26^{2} + {6 \choose 5} \cdot 26 - 1.
$$

Recall that we gave an outline of this proof in Lecture 15.

(b) In Lecture 15 we proved that $N = 26^6 - 25^6$ using a different counting argument. Use the binomial theorem to show directly that the two expressions for N are equal to each other.

2. Given $n \in \mathbb{N}$, define $RP(n)$ to be the set of all integers between 1 and n which are relatively prime to n, and let $\phi(n) = |RP(n)|$. For instance, $RP(2) = \{1\}$, so $\phi(2) = 1$; $RP(3) = \{1, 2\}$, so $\phi(3) = 2$; $RP(4) = \{1, 3\}$, so $\phi(4) = 2$; $RP(5) = \{1, 2, 3, 4\}$, so $\phi(5) = 4$; $RP(6) = \{1, 5\}$, so $\phi(6) = 2$ etc. The obtained function $\phi : \mathbb{N} \to \mathbb{N}$ is called the *Euler function*.

The goal of this problem is to use the inclusion-exclusion principle to prove the following formula for the Euler function: If $n = p_1^{a_1} \dots p_k^{a_k}$ where p_1, \ldots, p_k are distinct primes and each $a_i \in \mathbb{N}$ (here it is essential that each a_i is positive), then

$$
\phi(n) = n \prod_{i=1}^{k} (1 - \frac{1}{p_i})
$$
 (***)

Note that since $(1 - \frac{1}{n})$ $\frac{1}{p_i}$) = $\frac{p_i-1}{p_i}$, the above formula can be rewritten as $\phi(n) = \prod^k$ $i=1$ $p_i^{a_i-1}(p_i-1).$

So assume that $n = p_1^{a_1} \dots p_k^{a_k}$ with p_i and a_i as above. For each $1 \le i \le k$ let A_i be the set of all integers from 1 to n divisible by p_i , and let $A = \bigcup_{i=1}^k A_i$

- (a) Prove that $\phi(n) = n |A|$.
- (b) Prove that $|A_i| = \frac{n}{n_i}$ $\frac{n}{p_i}$ for each i, $|A_i \cap A_j| = \frac{n}{p_i p_i}$ $\frac{n}{p_i p_j}$ if i and j are distinct etc.
- (c) Now use (a), (b) and the inclusion-exclusion principle to prove the formula $(***)$. It may be easier to expand the product in $(***)$ and show that the obtained expansion is equal to the right-hand side of the formula in the inclusion-exclusion principle.

3. Problem 2 from Section 5.1 (make sure to prove your answer)

4. Problem 4 from Section 5.1 (make sure to prove your answer)

5. Problem 8 from Section 5.1 (the definition of the domain and range of a relation appear on page 165)

6. Consider the relation R on Z given by $xRy \iff x + y$ is even. Prove that R is an equivalence relation. Recall that we already checked symmetry and reflexivity in class, so you only need to prove transitivity.

Some comments of problems 2-5 from $HW#4$.

Problem 2. Make sure you are proving exactly what you are asked to: if $n = \prod_{i=1}^{k} p_i^{a_i}$ where p_1, \ldots, p_k are distinct prime and each $a_i \in \mathbb{N}$ and if $n = m^2$ for some $m \in \mathbb{N}$, then each a_i is even.

Problem 4. Recall that we discussed how to start on this problem in Lecture 16.

Problem 5. Here is a completely formal definition of the ord_p function (which may be helpful for writing a formal argument). Let $n \in \mathbb{N}$, and write $n = \prod_{i=1}^{k} p_i^{a_i}$ where p_1, \ldots, p_k are distinct primes and each $a_i \in \mathbb{Z}_{\geq 0}$. If p is any prime, define

$$
ord_p(n) = \begin{cases} a_i & \text{if } p = p_i \text{ for some } 1 \le i \le k \\ 0 & \text{if } p \notin \{p_1, \dots, p_k\} \end{cases}
$$

Note that it is Ok to allow some a_i equal to 0 here – for instance, we can write 45 as $3^2 \cdot 5^1$ or, say, as $3^2 \cdot 5^1 \cdot 7^0$. The definition of $\partial r d_p(45)$ does not depend on which of these factorizations we use.

General suggestion: It may be more convenient to solve these problems in a different order: $5,3,2,4$ since one can use $5(a)$ to solve 3 and 3 and/or $5(a)$ to solve 2.