Homework #5. Due on Friday, February 23rd by 1pm in TA's mailbox Reading:

1. For this assignment: sections 3.1 and 3.2 of the BOOK (throughout this assignment BOOK refers to the book 'A discrete transition to advanced mathematics').

2. For next week's classes: section 3.3 and the beginning of 3.4.

Practice problems from the BOOK: From 3.1: 4, 6, 9, 17, 20. From 3.2: 5, 7, 11.

Problems to hand in:

1. Problem 12 in 2.2 from the BOOK.

2. Let $n \in \mathbb{N}$, and let $\{A_1, \ldots, A_n\}$ be a collection of n finite sets such that any three distinct sets in the collection have empty intersection, that is, $A_i \cap A_j \cap A_k = \emptyset$ whenever i, j, k are distinct (we do NOT assume that the sets $\{A_i\}$ are disjoint). Use induction on n to prove that

$$|\bigcup_{i=1}^{n} A_i| = \sum_{i=1}^{n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j|.$$

Hint: In order to complete the induction step you would probably want to use two formulas for the cardinality of unions established earlier in class.

3. Locate the mistake in the following "proof" by strong induction.

Let S_n be the statement " $2^{n-1} = 1$." We claim that S_n is true for all $n \in \mathbb{N}$. Base case: S_1 is true since $2^{1-1} = 2^0 = 1$.

Strong induction step: Now fix $n \in \mathbb{N}$, and suppose that S_k is true for all $1 \leq k \leq n$. We need to show that S_{n+1} is true.

By definition of S_{n+1} , we need to show that $2^n = 1$. Using exponent laws, we can write

$$2^{n} = 2^{(2n-2)-(n-2)} = \frac{2^{2n-2}}{2^{n-2}} = \frac{(2^{n-1})^{2}}{2^{n-2}}.$$
 (***)

By induction hypothesis S_n and S_{n-1} are both true, so $2^{n-1} = 1$ and $2^{n-2} = 1$. 1. Thus, from the equation (***) we get $2^n = \frac{1^2}{1} = 1$, so S_{n+1} is also true.

- 4. Solve Problem 2 in 3.1 directly using definition of divisibility.
- **5.** Problem 1(a)(d) in 3.2.
- **6.** Let $a, b \in \mathbb{Z}$ with $(a, b) \neq (0, 0)$, and let d = gcd(a, b). Let

$$d\mathbb{Z} = \{ dk \mid k \in \mathbb{Z} \}$$

be the set of all multiples of d, and let

$$L_{a,b} = \{am + bn \mid m, n \in \mathbb{Z}\}$$

be the set of all integer linear combinations of a and b. Prove that $L_{a,b} = d\mathbb{Z}$ by showing that each of these two sets is contained in the other.

7. Problem 7 in 3.1.

8. Problems 21 and 22 in 3.1.